Схемы бестрансформаторного сетевого питания микроконтроллеров

img_1912

raschet

dsc_0703

dsc_0682

dsc_0728

dsc_0720

dsc_0734

dsc_0745

dsc_0774

dsc_0787

dsc_0794

dsc_0814

Пульсации и помехи

Понятия пульсации и помехи достаточно близкие и могут иметь различное толкование. В данной статье под пульсациями понимаются колебания напряжения/тока вызванные естественными процессами. Под помехами понимаются колебания(выбросы) напряжения/тока вызванные различными «паразитными» явлениями. Например: колебания напряжения на выходе источника питания после выпрямителя и LC фильтра — пульсации. Всплески напряжения, вызываемые коммутацией ключей — помехи. Еще пример: колебания напряжения на выходе трансформаторного блока питания после выпрямителя и фильтра с частотой 100Гц — пульсации, наводимые полем рассеяния колебания напряжения в схеме — помехи. Грубо говоря помеха это неестественное (мешающее) колебание напряжения. Может быть такая классификация не совсем научная и правильная, но она позволяет упростить изложение материала.

Для начала разберемся с пульсациями. В случае с трансформаторным блоком питания пульсации выходного напряжения обычно выше, чем у импульсного (стабилизированного) блока питания. Это связанно с низкой частотой импульсов напряжения на выходе выпрямителя трансформаторного блока питания. Однако низкочастотные пульсации трансформаторного блока питания эффективно подавляются аналоговыми схемами (операционные усилители, линейные стабилизаторы и др.). Частота пульсаций импульсного блока питания составляет десятки и даже сотни килогерц. Степень подавления таких высокочастотных пульсаций по питанию аналоговых схем значительно меньше и они могут «проникать» на их выход. Например в схеме входного тракта АЦП на операционном усилителе пульсации по питанию могут накладываться на полезный сигнал. Для подавления высокочастотных пульсаций по цепям питания операционных усилителей часто используются RC фильтры: резистор сопротивлением 10-100 Ом и керамический конденсатор емкостью 0,1-10 мкФ. Если требуется уменьшить пульсации импульсного блока питания в силовой цепи, то используются дополнительные LC фильтры.

С помехами дело обстоит гораздо хуже. Если величина пульсаций более менее поддается анализу на этапе проектирования, то оценить величину помех сложно.

В случае с трансформаторным блоком питания помехи создаются полем рассеяния трансформатора, у тороидальных трансформаторов оно меньше у Ш образных больше. Особенно «страдают» от этих помех аналоговые схемы, обрабатывающие низкоуровневые сигналы (прецизионные мультметры, усилители звуковой частоты, радио аппаратура). Для подавления помех от низкочастотного трансформатора используются экранирующие оболочки (кожухи) из стали или жести.

В импульсных блоках питания основные помехи создаются при переключении транзисторов и восстановлении диодов. Подавление этих помех очень обширная и достаточно скучная тема. Гораздо полезнее будет рассмотреть топологии (типы) импульсных блоков питания по формированию помех.

Обратно-ходовые (flyback) импульсные блоки питания с точки зрения помех самый неудачный выбор. Эти импульсные блоки питания среди прочих наиболее подвержены возникновению мощных импульсных помех. К проектированию и выбору таких блоков питания нужно подходить более тщательно, особенно если его мощность составляет десятки ватт.

Полумостовые (half-bridge) и мостовые (full-brige) импульсные блоки питания с точки зрения помех наиболее удачный выбор. Блоки питания данной топологии обычно имеют меньший уровень помех. Частным случаем полумостовых и мостовых импульсных блоков питания являются резонансные схемы в которых коммутация транзисторов осуществляется при нулевом напряжении или токе, из-за чего возникающие помехи минимальны.

Прочие топологии импульсных блоков питания занимают промежуточное место между обратно-ходовыми и полумостовыми (мостовыми) схемами. Не стоит воспринимать эту классификацию буквально, величина помех сильно зависит от реализации и при неудачном исполнении резонансная схема может «фонить» сильнее качественно спроектированного и изготовленного flayback.

Итог. При выборе блока питания следует учитывать, что помех от импульсных блоков питания больше чем от трансформаторных, но помехи импульсных блоков более высокой частоты (обычно это десятки мегагерц) и малой продолжительности. Если помеху от трансформаторного блока можно услышать в прямом смысле, то помехи от импульсных блоков питания можно увидеть разве, что осциллографом. Это не значит, что помехи импульсных блоков питания можно игнорировать, сильный их уровень способен нарушить работу цифровых схем и создать помехи в радиоэфире. Но нужно учитывать, что во многих случаях незначительный уровень помех качественно спроектированного импульсного блока питания не оказывает существенного влияния на работу устройства ( и соседних устройств).

Расчет трансформатора на Ш — образном ферритовом сердечнике.

Share

Tweet

Здравствуйте уважаемые коллеги!

img_1912
Как построить импульсный трансформатор на ферритовом кольце я уже рассказывал в своих уроках здесь. Теперь расскажу как я изготавливаю трансформатор на Ш — образном ферритовом сердечнике. Использую я для этого подходящие по размеру ферриты от старого «советского»оборудования, старых компьютеров, от телевизоров и другой электротехнической аппаратуры, которое у меня в углу валяется «до востребования».

Для ИБП по схеме двухтактного полумостового генератора, напряжение на первичной обмотке трансформатора, согласно схемы составляет 150 вольт, под нагрузкой примем 145 вольт. Вторичная обмотка выполнена по схеме двухполупериодного выпрямления со средней точкой. Смотреть схему

Читайте также:  Phobia v2 RDA – вторая версия дрипки Фобия от Alex VapersMD and Vandy Vape

shema-ibp-40-izmenenyj
.

Приведу примеры расчета и изготовления трансформаторов для ИБП небольшой мощности 20 — 50 ватт для этой схемы. Трансформаторы такой мощности я применяю в импульсных блоках питания для своих светильников на светодиодах. Схема трансформатора ниже. Необходимо обратить внимание, чтобы сложенный из двух половинок, Ш — сердечник не имел зазора.Магнитопровод с зазором используется только в однотактных ИБП.

Вот два примера расчета типичного трансформатора для различных нужд. В принципе, все трансформаторы на разные мощности имеют одинаковый способ расчета, почти одинаковые диаметры провода и одинаковые способы намотки. Если вам нужен трансформатор для ИБП мощностью до 30 ватт, то это первый пример расчета. Если нужен ИБП мощностью до 60 ватт, то второй пример.

Первый пример.

img_1929
Выберем из

tablica-ferr-serdechnikov
ферритовых сердечников №17, Ш — образный сердечник Ш7,5×7,5. Площадь сечения среднего стержня Sк = 56 мм.кв. = 0,56 см.кв.Окно Sо = 150 мм.кв. Расчетная мощность 200 ватт.Количество витков на 1 вольт у этого сердечника будет: n = 0,7/Sк = 0,7 / 0,56 = 1,25 витка.Количество витков в первичной обмотке трансформатора будет: w1 = n х 145 = 1,25 х 145 = 181,25. Примем 182 витка.При выборе толщины провода для обмоток, я исходил из таблицы «

provod-tok
».В своем трансформаторе я применил, в первичной обмотке, провод диаметром 0,43 мм. (провод большим диаметром не умещается в окне). Он имеет площадь сечения S = 0.145 мм.кв. Допустимый ток (смотреть в таблице) I = 0,29 A.Мощность первичной обмотки будет: Р = V x I = 145 х 0,29 = 42 ватта.Поверх первичной обмотки необходимо расположить обмотку связи. Она должна выдавать напряжение v3 = 6 вольт.Количество витков ее будет: w3 = n x v3 = 1,25 x 6 = 7,5 витка. Примем 7 витков. Диаметр провода 0,3 — 0,4 мм.Затем мотается вторичная обмотка w2. Количество витков вторичной обмотки зависит от необходимого нам напряжения. Вторичная обмотка, например на 30 вольт, состоит из двух равных полуобмоток, w3-1 и w3-2 ).Ток во вторичной обмотке, с учетом КПД (k=0,95) трансформатора: I = k xР/V = 0,95 x 42 ватта / 30 вольт = 1,33 А ;Подберем провод под этот ток. Я применил провод, нашедшийся у меня в запасе, диаметром 0,6 мм. Его S = 0,28 мм.кв. Допустимый ток каждой из двух полуобмоток I = 0,56 А. Так, как эти две вторичные полуобмотки работают вместе, то общий ток равен 1,12 А, что немного отличается от расчетного тока 1,33 А. Количество витков в каждой полуобмотке для напряжения 30 вольт: w2.1 = w2.2 = n х 30 = 1,25 х 30 = 37,5 вит.Возьмем по 38 витков в каждой полуобмотке.Мощность на выходе трансформатора: Рвых = V x I = 30 В х 1,12 А = 33,6 Ватт, что с учетом потерь в проводе и сердечнике, вполне нормально.

Все обмотки: первичная, вторичная и обмотка связи вполне уместились в окне Sо = 150 мм.кв.

Вторичную обмотку можно таким образом рассчитать на любое напряжение и ток, в пределах заданной мощности.

Второй пример. Теперь поэкспериментируем. Сложим два одинаковых сердечника №17, Ш 7,5 х 7,5.

img_1928
При этом площадь поперечного сечения магнитопровода «Sк», увеличится вдвое. Sк = 56 х 2 = 112 мм.кв. или 1,12 см.кв.Площадь окна останется та же «Sо» = 150 мм.кв.Уменьшится показатель n (число витков на 1 вольт). n = 0,7 / Sк = 0,7 /1,12 = 0,63 вит./вольт.Отсюда, количество витков в первичной обмотке трансформатора будет: w1 = n х 145 = 0,63 х 145 = 91,35. Примем 92 витка.

В обмотке обратной связи w3, для 6-ти вольт, будет: w3 = n x v3 = 0,63 х 6 = 3,78 витка. Примем 4 витка.Напряжение вторичной обмотки примем также как и в первом примере равным 30 вольт. Количество витков вторичных полуобмоток, каждая по 30 вольт: w2.1 = w2.2 = n х 30 = 0,63 х 30 = 18,9. Примем по 19 витков.Провод для первичной обмотки я использовал диаметром 0,6 мм. : сечение провода 0,28 мм.кв., ток 0,56 А.С этим проводом мощность первичной обмотки будет: Р1 = V1 x I = 145 В х 0,56 А = 81 Ватт.Вторичную обмотку я мотал проводом диаметром 0,9 мм. 0,636 мм.кв. на ток 1,36 ампера. Для двух полуобмоток ток во вторичной обмотке равен 2,72 ампера.Мощность вторичной обмотки Р2 = V2 x I = 30 x 2,72 = 81,6 ватт. Провод диаметром 0,9 мм. немного великоват, подходит с большим запасом, это не плохо.

Провод для обмоток я применяю из расчета 2 А на миллиметр квадратный (так он меньше греется, и падение напряжения на нем будет меньше), хотя все «заводские» трансформаторы мотают из расчета 3 — 3,5 А на мм.кв. и ставят вентилятор для охлаждения обмоток.Общий вывод из этих расчетов таков: — при сложении двух одинаковых Ш — образных сердечников увеличивается площадь «Sк» в два раза при той же площади окна «Sо».— число витков в обмотках (в сравнении с первым вариантом) изменяется.— первичная обмотка w1 с 182 витков уменьшается до 92 витка;— вторичная обмотка w2 с 38 витков уменьшается до 19 витков.

Читайте также:  MM или МС ?

Это значит, что в том же окне «Sо», с уменьшением количества витков в обмотках, можно разместить более толстый провод обмоток, то есть увеличить реальную мощность трансформатора в два раза.

Я наматывал такой трансформатор, со сложенными сердечниками № 17, изготавливал под них каркас.

img_1909

Нужно иметь в виду, что трансформаторы, по первому и второму примеру, можно использовать под меньшую нагрузку, вплоть от 0 ватт. ИБП вполне хорошо и стабильно держат напряжение.

Сравните внешний вид трансформаторов: пример-1, c одним сердечником и пример-2, с двумя сложенными сердечниками. Реальные размеры трансформаторов разнятся незначительно.

Анализ ферритовых сердечников №18 и №19 подобен предыдущим примерам.Все наши выполненные расчеты — это теоретические прикидки. На самом деле, получить такие мощности от ИБП на трансформаторах этих размеров довольно сложно. Вступают в силу особенности построения схем самих импульсных блоков питания. Схему.Выходное напряжение (а следовательно и выходная мощность) зависят от многих причин:— емкости сетевого электролитического конденсатора С1,— емкостей С4 и С5,— падения мощности в проводах обмоток и в самом ферритовом сердечнике;— падения мощности на ключевых транзисторах в генераторе и на выходных выпрямительных диодах.Общий коэффициент полезного действия «k» таких импульсных блоков питания около 85%.Этот показатель все же лучше, чем у выпрямителя с трансформатором на стальном сердечнике, где k = 60%. При том, что размеры и вес ИБП на феррите существенно меньше.

Порядок сборки ферритового Ш — трансформатора.

Используется готовый или собирается — изготавливается новый каркас под размеры сердечника. Как изготовить «Каркас для Ш — образного трансформатора» смотрите здесь. Хотя в этой статье и говорится про каркас для трансформатора со стальным сердечником, описание вполне подходит и к нашему случаю.Каркас нужно поставить на деревянную оправку. Намотка трансформатора производится вручную. На каркас сначала мотается первичная обмотка. Виток к витку заполняется первый ряд, затем слой тонкой бумаги, лакоткани, далее второй ряд провода и т.д. На начало и конец провода надевается тонкая ПВХ трубочка (можно изоляцию с монтажного провода) для жесткости провода, чтоб не обломился. Поверх первичной обмотки наносится два слоя бумаги (межобмоточная изоляция), затем нужно намотать витки обмотки связи w3. Обмотка w3 имеет мало витков, а потому ее располагают скраю на каркасе. Затем наносятся витки вторичной обмотки. Здесь желательно поступить таким образом, чтобы витки вторичной обмотки w2 не располагались поверх витков w3. Иначе могут возникнуть сбои в работе импульсного блока питания. Намотка ведется сразу двумя проводами (две полуобмотки), виток к витку в ряд, затем слой бумаги или скотч и второй ряд двух проводов. ПВХ трубку на концы провода можно не надевать, т.к. провод толстый и ломаться не будет. Готовый каркас снимается с оправки и надевается на ферритовый сердечник. Предварительно проверьте сердечник на отсутствие зазора. Если каркас туго одевается на сердечник, будьте очень осторожны, феррит очень легко ломается. Сломанный сердечник можно склеить. Я клею клеем ПВА, с последующей просушкой. Собранный ферритовый трансформатор, для крепости, стягивается по торцу скотчем. Нужно проследить, чтобы торцы половинок сердечника совпали без зазора и сдвига.

Share

610976ee3b

57cb855c49

42dc7e971c

053131897c

c1599f8808

f32c66be21

7e212907e8

b964315cf9

5c6ddab422

35c48819a4

Как переделать трансформатор в БП или зарядное устройство своими руками

Использовать обычный трансформатор в качестве блока питания нельзя, так как на его выходе получается переменное напряжение высоких частот. Кроме того, большинство подобных приборов не может функционировать без минимальных нагрузок, и им нужна доработка. Ниже рассказано, как сделать зарядное устройство из электронного трансформатора своими руками. При этом его не нужно разбирать, достаточно подключить к нему небольшую плату.

Вам это будет интересно Установка УЗО и автомата в квартире

В основе платы лежит диод Шоттки, а также фильтрующий конденсатор. Также для запуска блока питания необходимо подключать к его выходу лампочку. Подбор диода выполняется по имеющимся параметрам выходного напряжения и максимального тока.

Важно! Максимальное обратное напряжение диода должно быть в несколько раз выше, чем напряжение выхода электрического трансформатора.

Такая схема прекрасно работает и выдает уже постоянный и сглаженный ток. При желании можно установить более дорогое фильтрующее устройство и несколько конденсаторов. При регулярном пользовании таким БП следует установить его на радиатор.

4-modernizaciya-transformatornogo-ustrojstva
Модернизация трансформаторного устройства

Оцените статью
Добавить комментарий