Простая схема замены переменного резистора на две кнопки (КП301, КП304)

Комментарии:

Метелкин

Статья хорошая. Нужно дополнить, что импульсный стабилизатор предназначен для слаботочки, т.е. подключить через него телевизор или комп никак не получится, только лампочку или кулер какой-нибудь.

Ромка

Кто знает схему стабилизатора для лампочки-экономки и выгодно ли его собирать самостоятельно? Насколько дешевле/дороже выходит, чем купить новую лампу?

Пашка

Какой конденсатор нужно устанавливать в узел накопления электроэнергии для стабилизатора?

Оставить комментарий Отменить ответ

Похожие записи

liniya-elektroperedach1-358x256
Стабилизаторы напряжения для дачи

stabilizator-era-sta-30001-358x256
Стабилизатор Эра STA 3000 — устройство для дома

shema-podklyucheniya-stabilizatora-v-dome-358x256
Как выбрать стабилизатор напряжения для дома

ustrojstvo-elektromehanicheskogo-stabilizatora-358x256
Однофазный стабилизатор напряжения — сфера применения, особенности

Импульсный источник питания

fullsize
Работа ИБП основана на двойном преобразовании напряжения. Вначале, входной сигнал преобразуется в постоянное напряжение, а затем в импульсы высокой частоты. Трансформатор, применяющийся в схеме, не требует больших размеров. При совместном включении трансформатора и транзистора в режиме ключа, образовывается блокинг-генератор. Изменение и стабилизация выходного сигнала, происходит уменьшением длительности открытого состояния транзистора, которое управляется специализированной микросхемой. Её работа построена на принципе широтно-импульсной модуляции (ШИМ). Преимущество такого вида БП:

  • малый вес;
  • невысокая стоимость;
  • КПД достигает 98%;
  • защита от короткого замыкания и перегрузок.

Из недостатков отмечается сложность схемотехники и то, что такой источник питания вносит высокочастотные помехи в линию электропередачи.

Принцип работы ИБП

Сетевое напряжение попадает на схему через предохранитель, затем на ёмкостной помехоподавляющий фильтр. Далее, на выпрямительный блок из диодов. К выходу выпрямителя подключена сглаживающая электролитическая ёмкость. Напряжение на конденсаторе уменьшается, через цепочку резисторов и стабилитрон, для обеспечения пускового значения микросхемы. Микросхема управляет работой ключевого транзистора через ограничивающий резистор.

При поступлении прямоугольного импульса на транзистор происходит его открывание, и через обмотку импульсного трансформатора начинает течь ток. В результате наводится ЭДС и появляется напряжение на вторичной обмотке. Если длительность импульса, приходящего на ключевой транзистор, увеличивается, то увеличивается и величина выходного сигнала, при уменьшении соответственно уменьшается.

Для получения стабильного сигнала применяется обратная связь. Она собирается на оптопаре и резисторе. При повышении значения сигнала на вторичной обмотке трансформатора увеличивается и ток, протекающий через оптопару, что приводит к снижению сопротивления фототранзистора оптопары. В результате увеличивается падение напряжения на резисторе и уменьшается на входе ШИМ контроллера. Длительность импульса, посылаемая микросхемой на транзисторный ключ, увеличивается.

Тиристорный регулятор напряжения

В последние годы тиристорные регуляторы мощности оказались вытесненными регуляторами на симисторах или даже на интегральных микросхемах КР1182ПМ1, ГРН-1-220, требующих минимума навесных деталей. Причина забвения тиристоров кроется в том, что при большой мощности нагрузки число устанавливаемых на теплоотводы элементов достигает пяти (тиристор и четыре мощных диода выпрямительного моста), что резко увеличивает габариты и массу конструкции.

shema-prosteyshego-tiristornogo-regulyatora
Если собрать тиристорный регулятор мощности по схеме, приведенной на сайте www.radiochipi.ru то число устанавливаемых на теплоотводы деталей сократится до двух. В отличие от устройств, описанных ранее в данном тиристорном регуляторе при работе с максимальной мощностью тиристоры открываются уже при напряжении сетевой полуволны 15…20 В. Основное назначение описываемого тиристорного регулятора — управление лампами накаливания мощностью до 2 кВт.

При необходимости он может быть использован для регулирования рабочей температуры электроплиток, паяльников, электрообогревателей и других подобных нагрузок.

Конструктивно схему устройства можно разбить на три функциональных узла:

  • мощное исполнительное устройство на тиристорах VS1, VS2;
  • аналог маломощного тиристора с малым током управления на высоковольтных транзисторах VT1, VT2;
  • аналог однопереходного транзистора на транзисторах VT3, VT4.

Мощность, подаваемая в нагрузку, регулируется переменным резистором R11. При нижнем по схеме положении движка R11, подключенная в качестве нагрузки лампа накаливания EL1 светится с максимальной яркостью. Время открывания транзисторов VT3, VT4 в каждой полуволне выпрямленного напряжения зависит от введенного сопротивления резисторов R11, R13.

Когда напряжение на конденсаторе С2 достигает достаточного уровня, транзисторы VT3, VT4 открываются, и конденсатор С2 быстро разряжается через резистор R8 и эмиттерный переход транзистора VT1. Следовательно, транзисторы VT1, VT2 лавинообразно открываются, ток через управляющие электроды тиристоров VS1, VS2 резко возрастает, вследствии чего (в зависимости от полярности текущей полуволны сетевого напряжения) открывается VS1 или VS2. Резисторы R4, R8 предохраняют транзисторы от выхода из строя вследствие больших бросков тока при их лавинообразном открывании.

prostyie-tiristornyie-regulyatoryi
Сетевой фильтр L1-C1-R1 снижает излучаемые в сеть помехи, а также снижает чувствительность тиристорного регулятора к сетевым помехам извне. Кроме того, резистор R1 уменьшает акустический шум дросселя L1 и предотвращает выход из строя тиристоров при неудачно изготовленном или неисправном дросселе L1. Светодиод HL1 предназначен для подсветки мощного тиристорного регулятора в темноте Если в этом нет необходимости, его можно исключить. Ничто не мешает заменить в данной конструкции мощный узел на тиристорах симисторным узлом, как показано на рис.2. В этом случае симистор окажется единственной деталью, которой может потребоваться теплоотвод.

Детали. В устройстве могут быть применены постоянные резисторы МЯТ соответствующей мощности. При этом резистор R1 лучше взять невоспламеняемый, типа Р1-7. Завышенмая мощность резистора R7 (рис.1) объясняется вероятностью работы тиристорного регулятора при напряжении питания более 220 В. Переменный резистор R11 может быть типа СПЗ-30. Можно использовать резистор этого типа с совмещенным выключателем питания. Обе группы контактов в нем следует запараллелить, а соединения выполнить так, чтобы отключение питания происходило при минимальной установленной мощности. Подстроечный резистор R13 — типа СПЗ-16.

Конденсатор С1 — типа К73-15, К73-17 на напряжение не ниже 400 В; С2 — любой из К73-9. К73-15, К73-17 (не стоит применять керамические конденсаторы, так как в данном тиристорном регуляторе емкость этого конденсатора должна быть достаточно стабильна). Диодный мост VD1 можно заменить четырьмя диодами типа КД258 (Б…Д), КД221 (В, Г), КД243 (Г…Ж), IN4004 или КД209 с любыми индексами. Светодиод HL1 можно взять серий АЛ307, АЛ336, КИПМ01, КИПМ02. Стабилитрон VD2 можно заменить любым на 6.9 В, например, Д814А, КС126И, КС170А, КС468А. КС407Д, КС182А. На месте VT1 могут работать высоковольтные транзисторы КТ504А,

КТ506А, КТ506Б, 2N6517, КТ940А. КТ969А. На месте VT2 можно поставить КТ9115А, 2N6520. 2SA1625 (М. L. К). Транзистор VT3 можно заменить КТ315, VT4 — КТ361. Тиристор КУ202Н является единственным в этой серии, который способен работать при напряжении более 300 В. Со снижением надежности подойдут КУ202 с индексами К, Л, М. Если вместо тиристоров использовать симистор (рис.2), то КУ208Г можно заменить на 2ТС122-25-8, ТС106-10-6, ТС112-10-10 или другим аналогичным. Из “старых” могут работать ТС2-10, ТС2-16, ТС2-25.

Дроссель L1 намотан проводом ПЭВ-2 01 мм на отрезке ферритового стержня 400НН длиной 75 мм и диаметром 10 мм с прокладками из фторопластовой пленки или тонкого электрокартона. Обмотка тщательно пропитывается клеем БФ-2. Дроссель может иметь и другую конструкцию. Если мощность нагрузки не превышает 600 Вт, тиристоры могут работать без радиаторов. Однако для повышения надежности их желательно все-таки установить на соответствующие теплоотводы при мощности нагрузки более 400 Вт.

При мощности нагрузки 2 кВт используются теплоотводы с площадью охлаждающей поверхности не менее 250 см2 для каждого тиристора. Налаживание правильно собранного тиристорного регулятора сводится к установке подстроечным резистором R13 величины минимальной мощности, отдаваемой в нагрузку. Данный мощный тиристорный регулятор работает с лампами накаливания от 40 до 2000 Вт. Однако многие тиристоры позволяют использовать лампы мощностью всего в 8… 16 Вт. Работа собранного тиристорного регулятора с нагрузкой менее 40 Вт определяется экспериментально. Если мощный тиристорный регулятор будет работать с трансформаторной нагрузкой, то параллельно выводам первичной обмотки трансформатора следует включить лампу накаливания на 25…40 Вт.

PS: Привожу ниже превосходную схему симисторного регулятора мощности. Проста в изготовлении не требует дефицитных радиодеталей, повторить может любой начинающий радиолюбитель. Схема работает 100%.

simistornyj-regulyator-moshhnosti

Последние сообщения

  • Подключение линии капельного орошения к спринклерной системе03.08.2020
  • Сколько стоит заменить гибридную батарею03.08.2020
  • Что такое компонентный ремонт30.07.2020

Популярные сообщения

  • Усилитель Зуева18.05.2015
  • Расчет радиатора для КРЕНки03.12.2017
  • Устройство для восстановления Fuse байтов в ATtiny231329.10.2016

Схема управления громкостью двумя кнопками, простой электронный резистор на полевом транзисторе.

Данная схема является классической. В свое время она была опубликована в одном из журналов «Радио» в 90-х годах. По своей конструкции очень проста. Содержит всего один отечественный полевой транзистор типа КП304. В представленном варианте схемы громкостью можно управлять только на одном канале, то есть в моно режиме. Но при желании эту схему можно доработать и собрать две аналогичные схемы, которые нужно объединить хотя бы общими, сдвоенными кнопками управления «+» и «-». В итоге получим управление громкостью уже для стерео усилителя. Хотя этой схемой можно управлять не только громкостью звука. Это по сути резистор, управляемый двумя кнопками «больше» и «меньше». Следовательно, схема может быть применена в любом месте, где нужен переменный резистор.

Схема управления громкостью двумя кнопками, переменный резистор на кнопках

Теперь давайте с вами рассмотрим саму схему, а точнее ее работу. Это будет полезно знать новичками. Тем, кто еще слабо понимает подобные схемы и их принцип действия. Итак, основой схемы управления громкостью двумя кнопками является полевой транзистор с индуцированным каналом (транзистор p-типа). А как известно, подобные транзисторы имеют три вывода (иногда и 4), это затвор, исток и сток. Исток и сток являются основным силовым каналом, через который протекает рабочий ток. Затвор же является управляющим выводом. В изначальном состоянии (когда между управляющими выводами транзистора нет напряжения) полевой транзистор закрыт, сопротивление между истоком и стоком бесконечно большое, и следовательно ток через этот канал протекать не может.

Чтобы открыть транзистор и уменьшить сопротивления канала исток-сток необходимо приложить некоторое постоянное напряжение между затвором и истоком. Причем у полевых транзисторов подобного типа имеется так называемое пороговое напряжение (напряжение отсечки), ниже которого транзистор продолжает быть полностью закрытым. И лишь величина напряжения, которая больше порогового значения, способна начать открывать имеющийся транзистор. У нашего полевого транзистора КП304 напряжение отсечки равно 5 вольт. В отличии от биполярных транзисторов, у которых имеется существенный ток на управляющим переходе, у полевого транзистора такой ток отсутствует. Управление силовым переходом осуществляется за счет именно величины напряжения (электрического поля внутри транзистора).

Итак, на схеме можно увидеть делитель напряжения, состоящий из резистора R4 и R5. Параллельно R5 подключен силовой переход полевого транзистора (исток-сток). На схему подается постоянное напряжение 9-12 вольт. Это напряжение делится на делителе напряжения. Поскольку в первоначальный момент после включения схемы полевой транзистор закрыт, то он никак не оказывает влияния на имеющийся делитель напряжения. В этом состоянии будет максимальная громкость на выходе усилителя. Чтобы начать открывать полевой транзистор мы должны нажать на кнопку «-», тем самым подав на затвор транзистора отрицательный потенциал. После этого произойдет зарядка конденсатора C1 до какого-то своего уровня постоянного напряжения. Поскольку конденсатор C1 подключен параллельно (разче что через резистор R4) управляющему переходу полевого транзистора, то от величины заряда будет зависеть степень открытости полевика.

Чтобы уменьшить громкость на выходе схемы нужно нажать на кнопку «-», тем самым больше зарядив C1. Если же мы нажмем на кнопку «+», то тем самым мы уже будет способствовать разряду конденсатора, уменьшению напряжения на нем, и как следствие, закрытию полевика. Скорость нарастания громкости и ее уменьшения зависит как от емкости конденсатора C1 (чем она больше, тем дольше будет происходить зарядка и разрядка конденсатора), так и от величины сопротивлений R1, R2, R3.

Резистор R2 является общим как для увеличения громкости, так и для уменьшения. То есть, именно величиной R2 можно одновременно регулировать скорость изменения напряжения на делителе напряжения R4 и R5. В то время как R1 и R3 можно делать подстройку отдельно как для увеличения громкости, так и для уменьшения. А именно, чем больше будет сопротивления на этих резисторах, тем дольше будет происходить заряд или разряд конденсатора C1. Следовательно, будет увеличиваться время нарастания или затухания громкости на выходе схемы.

На правой стороне от делителя можно увидеть на схеме сигнальную цепь, через которую и проходит звуковой сигнал. Эта цепь представлена разделительными конденсаторами C2 и C3. Они отделяют переменную составляющую электрического напряжения и тока от постоянной. Ну, и между конденсаторами еще стоит токоограничительный резистор R6. Этим резистором можно регулировать уровень громкости, который подается на усилитель мощности звуковой частоты.

В итоге мы имеем, на вход схемы (на конденсатор C2) подается звуковой сигнал, идущий либо от предусилителя, или же от темброблока. Далее этот сигнал пройдя через резистор R6 поступает на делитель напряжения R4 и R5. На нем он либо ослабевает до нуля (если полевой транзистор полностью открыт) или же идет со своей изначальной величиной (если полевик полностью закрыт) на выход данной схемы, откуда он уже поступает на УМЗЧ. А величина затухания сигнала зависит от степени открытости полевого транзистора, что в свою очередь зависит от величины напряжения на конденсаторе C1. Это напряжение увеличивается или уменьшается путем нажатия на кнопки «+» и «-», что либо заряжает конденсатор, или же его разряжает.

Поскольку полевой транзистор не имеет ток на своем управляющем переходе, то стабильность установленной громкости на выходе схемы зависит от саморазряда конденсатора C1. Если подобрать конденсатор с минимальным саморазрядом, то стабильность установленной громкости будет высокой. Также можно повысить стабильность за счет увеличения емкости конденсатора. Ну, и тогда придется подобрать резисторы R1, R2, R3 подходящего номинала. Так что кому интересна данная схема управления громкостью двумя кнопками пробуйте собрать своими руками. Учтите, что кнопки «+» и «-» должны быть без фиксации.

Видео по этой теме:

P.S. Данную схему, естественно, можно применять не только для управления громкостью усилителя. Поскольку на выходе схемы имеется делитель напряжения, напряжение на котором зависит от степени открытости полевого транзистора, то эту схему можно использовать везде, где применяется переменный резистор. То есть, любой переменник можно просто заменить данной схемкой. Но также стоит учитывать, что за простотой этого варианта схемы кроется и значительный недостаток, а именно относительно хорошая стабильность установленного уровня напряжения на выходе, зависящая от величины напряжения на конденсаторе. Так что при подборе конденсатора C1 выберите такой, у которого будет минимальный саморазряд.

Читайте также:  Р. Карри: разворот на 180 градусов в астрологическом тесте Карлсона? Часть I

Импульсные регуляторы понижающего типа

Импульсные регуляторы напряжения

Преобразователи постоянного напряжения

К преобразователям постоянного напряжения относятся импульсные регуляторы напряжения и широтно-импульсные преобразователи.

Импульсные регуляторы напряжения применяются для регулирования постоянного напряжения. По сравнению с другими методами регулирования они обеспечивают лучшие энергетические характеристики, имеют меньшую массу и габариты.

Принцип импульсного регулирования заключается в том, что источник постоянного тока периодически подключается к нагрузке с некоторой частотой. Длительность интервала подключения tu

за один период
T
определяет величину напряжения на нагрузке. Нагрузке (если она активная) придаётся индуктивный характер с помощью дросселя
L
. Параметры цепи выбирают таким образом, чтобы постоянная времени цепи нагрузки значительно превышала период коммутации тока. При этом в цепи нагрузки обеспечивается непрерывное протекание тока с допустимой пульсацией.

Схема импульсного регулятора понижающего типа приведена на рис. 3.1 (a), временные диаграммы работы этой схемы – на рис. 3.1 (б).

При включённом транзисторе VT

ток дросселя нарастает практически по линейному закону от
Imin
до
Imax
. Напряжение на дросселе при этом равно:

,

а на нагрузке

,

при условии, что.

При выключенном транзисторе ток дросселя уменьшается от Imax

до
Imin
, при этом напряжение на дросселе обеспечивает значение напряжения на нагрузке:

().

Из равенства нулю среднего значения напряжения на дросселе следует:

;

.

Следовательно, изменяя коэффициент заполнения управляющих импульсов, можно регулировать напряжение на нагрузке в пределах 0…EП

.

С учётом падений напряжения на транзисторе и диоде реальное максимальное напряжение составляет (0.9 … 0.95) EП

.

Если нагрузка имеет индуктивный характер (например, двигатель постоянного тока), то требуемое значение пульсаций тока достигается за счёт выбора частоты коммутации транзистора VT

. Абсолютная величина равна:

,

и максимальное значение достигается при КЗ = 0.5

. С учётом этого требуемое значение частоты коммутации для обеспечения требуемого коэффициента пульсации тока равно:

.

При активном характере сопротивления нагрузки в цепь включается дроссель с индуктивностью L

, который определяет пульсации тока в нагрузке. Для уменьшения индуктивности дросселя параллельно нагрузке включается конденсатор. Для обеспечения непрерывного характера тока дросселя величина должна удовлетворять условию:

.

При наличии конденсатора переменная составляющая тока дросселя (треугольная по форме) замыкается через конденсатор. Падение напряжения на конденсаторе, обусловленное током первой гармоники, определяет пульсации напряжения на нагрузке:

.

Для треугольной формы тока амплитуда первой гармоники максимальна при КЗ = 0.5

и составляет (согласно разложению в ряд Фурье):

.

Следовательно,

;

откуда

.

При использовании в качестве коммутирующего элемента мощных полевых транзисторов MOSFET и IGBT частота коммутации может составлять десятки – сотни килогерц.

При использовании тиристоров частота коммутации не превышает нескольких килогерц. Схема импульсного регулятора на незапираемом тиристоре с принудительной коммутацией приведена на рис. 3.2.

Для запирания основного тиристора VS1

используются вспомогательный тиристор
VS2
и коммутирующий конденсатор
С
. Предварительно конденсатор
С
заряжается по цепи
VS2 – R – Lн
до напряжения питания. После включения
VS1
конденсатор перезаряжается по цепи
VS1 – VD1 – Lк – С
, причём переходной процесс носит колебательный характер. Наличие диода
VD1
приводит к тому, что в цепи протекает только первый положительный полупериод тока конденсатора, после чего напряжение на конденсаторе не изменяется. Для выключения тиристора
VS1
включается тиристор
VS2
и конденсатор С разряжаясь по цепи
VS2
,
VS1
выключает, приложенным в обратном направлении напряжением, тиристор
VS1
. При этом напряжение на нагрузке скачком увеличится до значения
E+Uc
. Ток нагрузки на интервале коммутации остаётся неизменным, поэтому напряжение на конденсаторе изменяется по линейному закону. Когда конденсатор
С
разрядится до нуля, на аноде тиристора
VS1
вновь нарастает прямое напряжение со скоростью. Для надёжного запирания тиристора
VS1
время разряда конденсатора должно быть больше времени выключения тиристора.

Далее напряжение на нагрузке продолжает линейно снижаться до полного перезаряда конденсатора С

через тиристор
VS2
. Когда ток тиристора
VS2
уменьшится до нуля, он выключится. Ток нагрузки замыкается по цепи диода
VD0
.

Наличие “всплесков” напряжения на нагрузке требует выбирать полупроводниковые приборы на двойное напряжение питания. Кроме того, диапазон регулирования напряжения уменьшается, так как при малых коэффициентах заполнения эти “всплески” не позволяют снизить напряжение меньше определённого уровня.

В схеме импульсного регулятора с мягкой коммутацией основной тиристор VS1

шунтируется в обратном направлении диодом
VD2
(рис. 3.3).

Процесс перезаряда конденсатора С

происходит так же, как и в предыдущей схеме. После включения тиристора
VS2
в цепи
C – Lк – VS2 – VS1 – C
возникает колебательный переходной процесс перезаряда конденсатора. Когда мгновенное значение разрядного тока конденсатора равно мгновенному току нагрузки, тиристор
VS1
обесточивается и далее разность токов конденсатора и нагрузки замыкается по диоду
VD2
. К основному тиристору
VS1
приложено обратное напряжение, равное прямому падению напряжения на диоде
VD2
. Ток через
VD2
должен протекать в течение времени, достаточного для выключения основного тиристора
VS1
. Когда ток конденсатора станет меньше тока нагрузки происходит дополнительный заряд конденсатора током нагрузки, и напряжение на нагрузке уменьшается по линейному закону, на этом интервале разностный ток нагрузки и конденсатора замыкается через диод
VD0
. Мгновенное значение напряжения на нагрузке не превышает величину
Е
.

Включение параллельно основному тиристору обратного диода позволяет отдавать мощность нагрузки в источник электропитания. Такой режим возможен при переходе двигателя постоянного тока в генераторный режим (режим динамического торможения). Вместе с тем, за счёт низкого обратного напряжения, приложенного к основному тиристору, увеличивается время выключения тиристора.

Схема импульсного регулятора, позволяющего регулировать напряжение на нагрузке от

и выше, приведена на рис. 3.4.

Повышение напряжения на нагрузке осуществляется за счёт энергии дросселя, включённого последовательно в цепь нагрузки. При включенном транзисторе VT

дроссель подключается к источнику постоянного напряжения, ток дросселя линейно нарастает от
Imin
до
Imax
. Напряжение на дросселе практически равно

.

.

Закрытый диод разделает схему на два участка. Ранее заряженный конденсатор С

разряжается на нагрузку, обеспечивая непрерывность тока нагрузки.

При закрытом транзисторе ток дросселя замыкается через открывшийся диод уменьшается от Imax

до
Imin
. Напряжение на дросселе меняет полярность и по отношению к нагрузке включено последовательно согласно с источником питания:

,(),

где.

Из равенства нулю среднего значения напряжения на дросселе следует:

; ;

откуда

.

Регулировочная характеристика (рис. 3.5) повышающего импульсного регулятора нелинейная, причём её вид зависит от соотношения сопротивлений элементов схемы (транзистора, диода, дросселя) и сопротивления нагрузки. При увеличении этого соотношения максимум напряжения уменьшается и устойчивая работа регулятора возможна до определённой величины коэффициента заполнения управляющих импульсов.

Среднее значение тока диода равно току нагрузки:

.

Среднее значение тока дросселя, а, следовательно, и источника постоянного напряжения равно:

.

Среднее значение тока транзистора равна:

.

Все полупроводниковые приборы должны быть выбраны на напряжение не меньше, чем максимальное значение напряжения на нагрузке.

Импульсные регуляторы для двигателей постоянного тока кроме регулирования величины напряжения, подаваемого на двигатель, должны выполнять ещё функции реверсирования (изменения полярности выходного напряжения) и динамического торможения (возврат энергии в источник постоянного напряжения при переходе двигателя в генераторный режим). Эти функции выполняются с помощью преобразователей постоянного напряжения с широтно-импульсным управлением.

Преобразователь представляет собой мостовую схему на полностью управляемых ключах, которые зашунтированы обратными диодами (рис. 3.6).

Обратные диоды используются для возврата энергии в источник, поэтому если источник постоянного напряжения не обладает двусторонней проводимостью (например, выпрямитель), то выход источника необходимо зашунтировать конденсатором С

соответствующей ёмкости.

Основные параметры преобразователя определяются алгоритмом управления ключами. Различают три способа управления ключами:

— симметричный;

— несимметричный;

— поочерёдный.

При симметричном управлении ключи коммутируются попарно в противофазе. При включении ключей К1

и
К4
напряжение на двигателе равно

и имеет положительную полярность; при включении
К2
и
К3
напряжение на двигателе меняет полярность, оставаясь таким же по величине. Среднее значение напряжения на нагрузке определяется с учётом напряжений обеих полярностей (рис. 3.7 (а)).

Величина напряжения определяется коэффициентом заполнения управляющих импульсов: для одной пары ключей (К1

и
К4
) равен

, а для другой (
К2
и
К3
) –
1-KЗ
:

.

В интервале изменения

от 0 до 0.5 напряжение на нагрузке изменяется от —

до 0, а в интервале от 0.5 до 1 – от 0 до

.

Форма тока нагрузки имеет такой же характер, как и в импульсных регуляторах: при включённых ключах К1

и
К4
ток нагрузки линейно нарастает от
Imin
до
Imax
, когда
К1
и
К4
закрыты, то ток нагрузки, определяемый индуктивностью нагрузки, через диоды
VD2
и
VD3
возвращает в источник энергию, запасённую в индуктивности, и уменьшается от
Imax
до
Imin
.

При работе нагрузки (двигатель постоянного тока) в генераторном режиме, когда э.д.с. якоря

больше
ЕП
, ток нагрузки меняет своё направление и при включённых ключах
К1
и
К4
ток нагрузки через диоды
VD1
и
VD4
возвращает энергию в источник, при этом ток уменьшается от —
Imax
до —
Imin
, а при включенных ключах
К2
и
К3
ток нагрузки увеличивается от —
Imin
до —
Imax
, запасая энергию в индуктивности нагрузки. При изменении коэффициента заполнения управляющих импульсов изменяется величина энергии, возвращаемой в источник.

Симметричный способ управления характеризуется повышенными пульсациями тока нагрузки вследствие изменения напряжения на нагрузке от —

до +

, и непропорциональной зависимостью напряжения на нагрузке от коэффициента заполнения.

При несимметричном методе управления для положительной полярности напряжения на нагрузке ключи К1

и
К2
управляются в противофазе, ключ
К4
постоянно открыт, а
К3
– постоянно закрыт. Для отрицательной полярности напряжения – наоборот:
К3
и
К4
управляются в противофазе,
К2
– открыт,
К1
– закрыт. Далее рассматривается работа преобразователя при положительной полярности напряжения на нагрузке (рис 3.7 (б)).

При открытом ключе К1 ток нагрузки увеличивается от Imin

до
Imax
, напряжение на нагрузке равно +

. Когда К1 закрывается, ток нагрузки замыкается через
К4
и
VD2
, уменьшаясь от
Imax
до
Imin
, при этом напряжение на нагрузке практически равно нулю. Коэффициент заполнения управляющих импульсов может изменяться от 0 до 1, при этом напряжение на нагрузке меняется от 0 до +

:

.

При работе нагрузки в генераторном режиме при открытом К1

ток нагрузки через диоды
VD1
и
VD4
возвращает энергию в источник, а при открытом
К2
ток нагрузки замыкается через
К2
и
VD4
, накапливая энергию в индуктивности нагрузки.

При недостаточно высокой граничной частоте коммутации ключей увеличить частоту пульсаций тока в нагрузке в два раза позволяет поочерёдный способ управления ключами. Если нет необходимости осуществлять режим возврата энергии в источник, то управляющее напряжение подаётся только на ключи одной диагонали: для положительного напряжения на К1

и
К4
, для отрицательного – на
К2
и
К3
.

Форма управляющего напряжения показана на рис. 3.8 (а).

Длительность импульса изменяется в пределах от до, а паузы управляющих напряжений сдвинуты на половину периода. Напряжение на нагрузке равно напряжению питания, когда оба ключа открыты, и равно нулю, когда один из ключей закрыт. Ток нагрузки при этом замыкается через другой открытый ключ и соответствующий обратный диод. Такая ситуация возникает два раза за период управляющего напряжения, поэтому частота пульсаций напряжения и тока в нагрузке в два раза выше. Изменение длительности управляющих импульсов от до соответствует изменению коэффициента заполнения импульсов напряжения на нагрузке от 0 до 1.

Если управлять ключом К2 в противофазе с ключом К1, а ключом К3 в противофазе с ключом К4, то преобразователь может работать в режиме возврата энергии в источник при работе двигателя постоянного тока в генераторном режиме (рис. 3.8 (б)).

Преобразователь с триггером Шмитта

В тех импульсных стабилизационных приборах, которые используют триггер Шмитта, уже нет такого большого количества компонентов, как в предыдущем типе устройства. Здесь главным элементом является триггер Шмитта, в состав которого входит компаратор. Задачей компаратора является сравнение уровня напряжения на выходе и максимально допустимого ее уровня.

trigger-shmitta
Стабилизатор с триггером Шмитта

Когда напряжение на выходе превысило свой максимальный уровень, триггер переключается в нулевую позицию и приводит к размыканию ключа. В это время дроссель или конденсатор разряжаются. Конечно, за характеристиками электрического тока постоянно следит вышеупомянутый компаратор.

И тогда, когда напряжение падает ниже требуемого уровня, фаза «0» меняется на фазу «1». Далее ключ замыкается, и электрический ток поступает в интегратор.

Преимуществом такого импульсного стабилизатора напряжения является то, что его схема и конструкция являются достаточно простыми. Однако он не может применяться во всех случаях.

Стоит отметить, что импульсные стабилизационные устройства могут работать только в отдельных направлениях. Здесь имеется в виду, что они могут быть как сугубо понижающими, так и сугубо повышающими. Также выделяют еще два типа таких приборов, а именно инвертирующий и устройство, которые могут произвольно изменять напряжение.

Цифровые потенциометры

Цифровые потенциометры выполняют функцию регулирования, аналогичную той, что выполняет обычный потенциометр с механическим управлением.

Цифровые потенциометры

Сопротивление электронного регулятора изменяется дискретно (ступенчато) при подаче тактового импульса на счетный вход CLK микросхемы, а увеличение или уменьшение сопротивления определяется уровнем сигнала на входе UP/DOWN.

Помимо электронных аналогов многопозиционных механических переключателей, предназначенных для коммутации ограниченного количества электрических цепей, в последние годы появились и электронные аналоги механически управляемых (переменных) сопротивлений — электронные реостаты и потенциометры. Эти приборы, в отличие от механических аналогов, более компактны, надежны, имеют меньший уровень собственных шумов, допускают возможность одновременного дистанционного управления неограниченного числа регулировочных элементов. Пример использования вы можете видеть на рисунке выше.

В упрощенном виде электронные реостаты и потенциометры содержат набор (линейку) последовательно соединенных резисторов, коммутируемых электронными КМОП-ключами. Ключи эти обычно управляются:

  • либо подаваемым извне цифровым кодом;
  • либо формируемым непосредственно в микросхеме в зависимости от продолжительности подачи управляющего сигнала «вверх» или «вниз» на выводы управления, предназначенные для подключения к кнопкам управления или к источникам внешних управляющих сигналов «цифрового» уровня 1/0.
Читайте также:  Простой импульсный блок питания на ir2153(d) для усилителя и не только

Примечание

Особенностью цифровых электронных реостатов и потенциометров является то, что изменение их электрического сопротивления осуществляется дискретно с заданным шагом по линейному, логарифмическому или иному, заданному пользователем, закону. Количество таких шагов обычно кратно двум, например, 32, 64, 128, 256 и т. д. При отключении/включении питания установленный до отключения на электронном потенциометре уровень (положение среднего вывода) запоминается.

Электронные потенциометры используют в технике связи, телевидении, персональных компьютерах, производственной и бытовой радиоэлектронной аппаратуре. Такие потенциометры применяют для узлов электронной настройки, многоканальной регулировки громкости/тембра звуковоспроизводящей аппаратуры, в системах автоматической регулировки усиления, перестраиваемых многозвенных фильтрах, схемах управления параметрами дисплеев и т. д.

Примечание.

Применение цифровых электронных потенциометров и реостатов при их работе на переменном токе ограничено областью рабочих частот, в пределах которой сигнал после прохождения через такой регулятор ослабляется не более чем на 3 дБ. Кроме того, поскольку в состав регуляторов входят нелинейные полупроводниковые элементы, повышается уровень нелинейных искажений. Этот уровень заметно возрастает при понижении напряжения питания микросхемы регулятора. Если в составе электронного устройства содержится несколько электронных потенциометров и реостатов, негативные последствия от их совместного использования суммируются.

Цифровые электронные реостаты и потенциометры фирмы Dallas Semiconductor (DS) — Maxim, например, DS1668 выпускаются с интерфейсом ручного управления (в виде кнопки) или в виде традиционной интегральной микросхемы — DS1669.

Расположение выводов микросхемы DS1669

Рис.1 Расположение выводов микросхемы DS1669:

RH — верхний; RW — средний; RL— нижний вывод потенциометра; +V,-V — питание; UC—вход управления перемещением вверх; DC — вниз

Эти микросхемы однотипны, имеют 64 ступени изменения сопротивления и выпускаются в стандартных номиналах 10, 50 и 100 кОм.

Типовые примеры управления электронными потенциометрами DS1669 при помощи одной или двух кнопок приведены на рис. 2 и рис. 3.

Рис.2. Типовая схема включения цифрового электронного потенциометра DS 1669 с однокнопочным управлением

Рис.3. Типовая схема включения цифрового электронного потенциометра DS1669 с двухкнопочным управлением

Приведу далее сведения по основным разновидностям современных цифровых потенциометров.

DS1267 — двухканальный линейный цифровой потенциометр на номинал 10, 50 или 100 кОм. Имеет 256 позиций положения движка с управлением по последовательному трехпроводному интерфейсу. Напряжение питания 5(±5) В.

DS1666 — цифровой потенциометр, предназначенный для устройств звуковоспроизведения. Он имеет логарифмическую шкалу и 128 точек позиционирования. Напряжение питания 5 В. Значения сопротивлений резистивной матрицы может быть 10, 50, 100 кОм. Затухание сигнала с амплитудой до 5 В на уровне -3 дБ на частотах 1,1; 0,2 и 0,1 МГц, соответственно.

DS1667 — представляет собой сдвоенный цифровой потенциометр. Микросхема содержит также два широкополосных операционных усилителя. Каждый потенциометр формируется из 256 элементов, резисторы могут складываться, что дает возможность получать единственный потенциометр на 512 элементов.

DS1802 — сдвоенные потенциометры, обеспечивают регулирование уровня громкости и/или тембра звукозаписи в проигрывателях компакт-дисков, звуковых платах (картах) и иных электронных устройствах. Эти потенциометры имеют логарифмическую характеристику регулировки сопротивления. Весь диапазон в 45 кОм разбит на 65 позиций с приращением шага в 1 дБ. Для управления потенциометром (потенциометрами) от центрального процессора или иных микросхем используют трехпроводный последовательный интерфейс. Потенциометрами можно управлять и при помощи обычных кнопок.

Помимо перечисленных, известны также микросхемы цифровых потенциометров:

DS1800 — сдвоенный цифровой линейный потенциометр на 128 позиций номиналом 50 кОм с управлением по последовательному трехпроводному интерфейсу. Напряжение питания 3(5) В.

DS1801/DS1802 — сдвоенный цифровой потенциометр на 64 позиции, с логарифмической характеристикой, номиналом 50 кОм с управлением по последовательному трехпроводному интерфейсу. Напряжение питания 3(5) В.

DS1803 — сдвоенный линейный цифровой потенциометр на 256 позиций, номиналом 10, 50 или 100 кОм с управлением по последовательному двухпроводному интерфейсу. Напряжение питания 3(5) В.

DS1804 — энергонезависимый линейный цифровой потенциометр, который имеет 100 позиционных отводов, номиналом 10, 50 или 100 кОм. Напряжение питания 3(5) В.

DS1805 — линейный цифровой потенциометр на 256 позиций номиналом 10, 50 или 100 кОм с управлением по последовательному двухпроводному интерфейсу. Напряжение питания 3(5) В.

DS1806 — линейный шестиканальный цифровой потенциометр на 64 позиции номиналом 10, 50 или 100 кОм с управлением по последовательному трехпроводному интерфейсу. Напряжение питания 2,7—5,5 В.

DS1807 — сдвоенный цифровой потенциометр на 64 позиции каждый, с логарифмической характеристикой изменения сопротивлений для регулирования уровня звуковых сигналов. Работает с двухпроводным последовательным интерфейсом. Программно можно объединить два потенциометра в один. Напряжение питания 3(5) В.

DS1808 — сдвоенный логарифмический цифровой потенциометр на 32 позиции, номинал 45 кОм. Двухпроводное управление. Напряжение питания +4,5; ±13,2 В.

DS1809 — цифровой потенциометр на 64 позиции. Управление кнопками «вверх»/»вниз». Предусмотрена функция (авто)сохранения установленного уровня. Значения сопротивлений резистивной матрицы может быть 10, 50, 100 кОм. Затухание сигнала с амплитудой до 5 В на уровне —3 дБ на частотах 1,0; 0,2 и 0,1 МГц, соответственно. Напряжение питания +4,5—5,5 В.

DS1844 — счетверенный линейный потенциометр на 64 позиции с двухпроводным интерфейсом номиналом 10, 50 или 100 кОм с двухпроводным интерфейсом. Напряжение питания 2,7—5,5 В.

DS1845 — сдвоенный линейный потенциометр на 256 позиций с двухпроводным интерфейсом. Напряжение питания 3(5) В.

DS1847 и DS1848 — температурно-компенсированные двойные линейные цифровые потенциометры на 256 позиций номиналом 10 или 50 кОм. Напряжение питания +3,0—5,5 В.

Помимо перечисленных, известны также цифровые потенциометры DS1854—DS1859y DS1866—DS1870, DS2890, DS3902, DS3903—DS3905, DS3930, DS4301 и др., сведения о которых можно почерпнуть из справочной литературы или на сайтах фирм-производителей. Отметим также в порядке сопоставления некоторые цифровые потенциометры иных фирм [24.2—24.4].

MAX5160/MAX5161 — линейный цифровой потенциометр фирмы MAXIM-DALLAS на 32 позиции, номиналы 50,100,200 кОм. Напряжение питания от 2,7 до 5,5 В. Трехпроводный интерфейс.

МАХ5400—МАХ5405 — линейные цифровые потенциометры на 256 позиции. Напряжение питания от 2,7 до 5,5 В.

MAX5407 — цифровой потенциометр на 32 позиции с логарифмической шкалой, номинал 20 кОм. Область рабочих частот до 500 кГц. Напряжение питания от 2,7 до 5,5 В.

MAX5408—MAX5411 — сдвоенные цифровые потенциометры на 32 позиции с логарифмической шкалой, номинал 10 кОм. Напряжение питания 6т 2,7 до 3,6 В для MAX5408, MAX5409 и от 4,5 до 5,5 В для MAX5410, MAX5411.

MAX5413—MAX5415 — сдвоенные линейные цифровые потенциометры на 256 позиций, номинал, соответственно, 10, 50 и 100 кОм. Напряжение питания от 2,7 до 5,5 В.

Кроме перечисленных в линейке подобных изделий этой фирмы можно назвать микросхемы MAX5417—MAX5439, MAX5450—MAX5457, MAX5460—MAX5468, MAX5471—MAX5472, MAX5474—MAX5475, MAX5477—MAX5479, MAX5481—MAX5484, MAX5487— MAX5492 и др., каждая, из которых имеет индивидуальные отличия и развивает области применения цифровых потенциометров и способов их управления.

Так, например:

MAX5471, MAX5472, MAXS474, MAX5475 — энергонезависимые 32-х позиционные линейные цифровые потенциометры с последовательным трехпроводным интерфейсом. MAX5471/MAX5474 имеют сопротивление 50 кОм, a MAX5472/MAX5475 — 100 кОм. Напряжение питания от 2,7 до 5,25 В.

Упомянем также для сравнения некоторые цифровые потенциометры фирмы Analog Device [24.3].

AD5200/AD5201 — цифровые потенциометры номиналами 10,50 кОм на 256 и 33 позиции, соответственно.

AD5231/AD5235 — цифровые потенциометры на 1024 позиции.

AD5232 — цифровой двухканальный потенциометр на 256 позиций.

AD5234 — цифровой четырехканальный потенциометр на 64 позиции.

AD5291/AD5292 — цифровые потенциометры на 256/1024 позиции на номинал 20,50,100 кОм.

AD7376 — цифровой потенциометр на 128 позиций на номинал 10, 50, 100,1000 кОм.

AD8400/AD8402/AD8403 — 1, 2 или 4-х канальные цифровые потенциометры на 1,10,50 или 100 кОм, 256 позиций, с трехпроводным интерфейсом.

Цифровые программируемые потенциометры фирмы ON Semiconductor САТ5270 и САТ5271 — двухканальные цифровые потенциометры на 50 и 100 кОм для точной настройки с 256 ступенями регулирования и интерфейсом 12С.

Цифровые программируемые потенциометры фирмы Catalyst Semiconductor САТ5111 и САТ5113 [24.4] на 100 позиций при напряжении питания 2,5—6,0 В потребляют ток 0,1 мА.

Цифровые потенциометры

Рис.4. Эквивалентная схема электронного аттенюатора МС3340

Несколько иной принцип работы у другого управляемого извне прибора — электронного аттенюатора. Пример практической реализации одного из них — МС3340 фирмы Motorola приведен на рис. 4. Аттенюатор позволяет осуществлять дистанционное или непосредственное управление коэффициентом передачи (ослабления) сигнала до 80 дБ в полосе частот до 1 МГц. Напряжение питания аттенюатора — 9—18(20) В. Максимальное напряжение входного сигнала — до 0,5 В.

Типовая схема использования электронного аттенюатора МС3340 приведена на рис.5.

Цифровой потенциометр

Рис.5. Типовая схема включения электронного аттенюатора МС3340

Примечание.

Особое положение в ряду электрически регулируемых пассивных элементов занимает специализированная микросхема МАХ1474с электрически переключаемыми конденсаторами— аналог миниатюрного конденсатора переменной емкости, рис. 6.

Применение такой микросхемы вместо традиционных варикапов или конденсаторов переменной емкости предпочтительнее ввиду идентичности емкостных параметров микросхемы, синхронности изменения емкости при одновременном использовании нескольких аналогов управляемых конденсаторов, лучшей температурной стабильности.

Схема электирчески управляемого конденсатора переменной емкости

Примечание.

Возможная область применения микросхем с электрически переключаемыми конденсаторами— синхронная настройка колебательных контуров входных цепей радиоприемных устройств, фильтров промежуточной и иной частоты.

Управление батареей конденсаторов от встроенной схемы управления позволяет ступенчато с минимальным шагом в 0,22 пФ менять в 32 ступени ее емкость в пределах от 6,4 до 13,3 пФ на выводе СР относительно общего провода при заземленном выводе СМ.

Возможна эксплуатация конденсаторной батареи при подключении ее через выводы СР и СМ с изменением емкости в пределах от 0,42 до 10,9 пФ с шагом 0,34 пФ. Температурный коэффициент емкости управляемого конденсатора равен 3,3*10-5 1/град.

Напряжение питания микросхемы 2,7—5,5 В при потребляемом токе 10 мкА. Микросхему можно применять до частот в несколько сотен мегагерц. Так, эквивалентная добротность контура порядка 100 на частотах ниже 20 МГц падает с ростом частоты до 359 МГц в 10 раз.

Микросхемы МАХ1474 можно применять в узлах электронной настройки, в емкостных аттенюаторах, в генераторах и других радиоэлектронных устройствах.

Похожие радиосхемы и статьи:

Принципиальная схема

Схема построена на основе полевого транзистора и конденсатора. При помощи кнопок мы управляем степенью заряда конденсатора, напряжение на котором управляет полевым транзистором.

Схема замены переменного резистора двумя кнопками

Рис. 1. Схема замены переменного резистора двумя кнопками.

Недостаток данной схемы регулировки — нет запоминания исходного состояния в момент включения, а также конденсатор по истечению времени все же теряет свой заряд.

Но тем не менее данное решение может отлично справиться, для примера, с задачей регулировки громкости в простом усилителе.

Простой и надежный регулятор постоянного тока для сварки и зарядки

Предлагается конструкция удобного и надёжного регулятора постоянного тока. Диапазон изменения им напряжения — от 0 до 0,86 U2, что позволяет использовать этот ценный прибор для различных целей. Например, для зарядки аккумуляторных батарей большой ёмкости, питания электронагревательных элементов, а главное — для проведения сварочных работ как обычным электродом, так и из нержавеющей стали, при плавной регулировке тока.

Простой и надежный регулятора постоянного тока для сварки и зарядки

Принципиальная электрическая схема регулятора постоянного тока.

График, поясняющий работу силового блока, выполненного по однофазной мостовой несимметричной схеме (U2 — напряжение, поступающее со вторичной обмотки сварочного трансформатора, alpha — фаза открывания тиристора, t — время).

Регулятор может подключаться к любому сварочному трансформатору с напряжением вторичной обмотки U2=50…90В. Предлагаемая конструкция очень компактна. Общие габариты не превышают размеры обычного нерегулируемого выпрямителя типа «мостик» для сварки постоянным током.

Схема регулятора состоит из двух блоков: управления А и силового В. Причём первый представляет собой не что иное, как фазоимпульсный генератор. Выполнен он на базе аналога однопереходного транзистора, собранного из двух полупроводниковых приборов n-p-n и p-n-p типов. С помощью переменного резистора R2 регулируется постоянный ток конструкции.

В зависимости от положения движка R2 конденсатор С1 заряжается здесь до 6,9 В с различной скоростью. При превышении же этого напряжения транзисторы резко открываются. И С1 начинает разряжаться через них и обмотку импульсного трансформатора Т1.

Тиристор, к аноду которого подходит положительная полуволна (импульс передаётся через вторичные обмотки), при этом открывается.

В качестве импульсного можно использовать промышленные трёхобмоточные ТИ-3, ТИ-4, ТИ-5 с коэффициентом трансформации 1:1:1. И не только эти типы. Хорошие, например, результаты дает использование двух двухобмоточных трансформаторов ТИ-1 при последовательном соединении первичных обмоток.

Причём все названные типы ТИ позволяют изолировать генератор импульсов от управляющих электродов тиристоров.

Только есть одно «но». Мощность импульсов во вторичных обмотках ТИ недостаточна для включения соответствующих тиристоров во втором (см. схему), силовом блоке В. Выход из этой «конфликтной» ситуации был найден элементарный. Для включения мощных использованы маломощные тиристоры с высокой чувствительностью по управляющему электроду.

Силовой блок В выполнен по однофазной мостовой несимметричной схеме. То есть тиристоры трудятся здесь в одной фазе. А плечи на VD6 и VD7 при сварке работают как буферный диод.

Монтаж? Его можно выполнить и навесным, базируясь непосредственно на импульсном трансформаторе и других относительно «крупногабаритных» элементах схемы. Тем более что соединяемых в данную конструкцию радиодеталей, как говорится, минимум-миниморум.

Прибор начинает работать сразу, без каких-либо наладок. Соберите себе такой — не пожалеете.

А.ЧЕРНОВ, г. Саратов. Моделист-конструктор 1994 №9.

Область применения

Мощный стабилизатор напряжения, схема которого может применяться для установки в оборудовании с определённым выходным напряжением, применяется не только в быту, но и на производстве. Его используют там, где параметры электрических сетей нестабильны, что существенно влияет на работу оборудования. С данными импульсными приборами регулировки напряжения достигается высокий коэффициент стабилизации и КПД.

Инженерный имеет все необходимые инструменты для качественного проведения измерения сопротивления заземляющих устройств, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!

Если хотите заказать измерение сопротивления заземляющих устройств или задать вопрос, звоните по телефону: +7 (495) 181-50-34.

Оцените статью
Добавить комментарий