Электрические схемы бесплатно. Схема симисторного выключателя

elektronnye-klyuchi

sensornyj-pereklyuchatel-na-k176tm1-mikrosheme

sensornyiy-vyiklyuchatel

Для индикации уровня сигнала или постоянного напряжения, тока частоиспользуют поликомпараторные микросхемы вроде AN6884, КА2284, ВА6124 или многие другие аналогичные. Такая микросхема представляет собой набор компараторов, с выходами на светодиоды, а так же измерительную схему и схему предварительного усиления, детектора.

На рисунке 1 показана типовая схема включения микросхем AN6884, КА2284, ВА6124. Деталей минимум, и получаем пятипороговый индикатор уровня. Светодиоды работают по принципу «градусника», то есть, если их расположить последовательно в линию и признать это все как непрерывную линию, то чем больше сигнал, тем длиннее линия (тем больше светодиодов горит).

Но, бывают случае, когда необходимо не только визуально определить уровень сигнала, но и предпринять какие-то меры, если уровень сигнала достиг некоторого уровня. Например, при зажигании светодиода HL5 нужно чтобы включилось электромагнитное реле и своими контактами включило некую нагрузку или устройство.

Статический режим работы

электронные ключи
В нём проводится анализ закрытого и открытого состояния ключа. В первом на входе находится низкий уровень напряжения, который обозначает сигнал логического нуля. При таком режиме оба перехода находятся в обратном направлении (получается отсечка). А на коллекторный ток может повлиять только тепловой. В открытом состоянии на входе ключа находится высокий уровень напряжения, соответствующий сигналу логической единицы. Возможной является работа в двух режимах одновременно. Такое функционирование может быть в области насыщения или линейной области выходной характеристики. На них мы остановимся детальнее.

Насыщение ключа

В таких случаях переходы транзистора являются смещенными в прямом направлении. Поэтому, если изменится ток базы, то значение на коллекторе не поменяется. В кремниевых транзисторах для получения смещения необходимо примерно 0,8 В, тогда как для германиевых напряжение колеблется в рамках 0,2-0,4 В. А как вообще достигается насыщение ключа? Для этого увеличивается ток базы. Но всё имеет свои пределы, равно как и увеличение насыщения. Так, при достижении определённого значения тока, оно прекращает увеличиться. А зачем проводить насыщение ключа? Есть специальный коэффициент, что отображает положение дел. С его увеличением возрастает нагрузочная способность, которую имеют транзисторные ключи, дестабилизирующие факторы начинают влиять с меньшей силой, но происходит ухудшение быстродействия. Поэтому значение коэффициента насыщения выбирают из компромиссных соображений, ориентируясь по задаче, которую необходимо будет выполнить.

Недостатки ненасыщенного ключа

А что будет, если не было достигнуто оптимальное значение? Тогда появятся такие недостатки:

  1. Напряжение открытого ключа упадёт потеряет примерно до 0,5 В.
  2. Ухудшится помехоустойчивость. Это объясняется возросшим входным сопротивлением, что наблюдается в ключах, когда они в открытом состоянии. Поэтому помехи вроде скачков напряжения будут приводить и к изменению параметров транзисторов.
  3. Насыщенный ключ обладает значительной температурной стабильностью.

Как видите, данный процесс всё же лучше проводить, чтобы в конечном итоге получить более совершенное устройство.

Для схемы «Индикатор мягкого включения лампы»

Индикатор мягкого включения (ИМВ) предназначен для улучшения потребительских свойств настенных клавишных выключателей и для экономии рабочего ресурса ламп накаливания. ИМВ обеспечивает экономичный (50% мощности) режим работы ламп и «мягкое» (двухступенчатое) их включение для увеличения срока службы.В неосвещенном помещении свечение светодиода HL2 указывает на расположение клавиши SA1 двухклавишного выключателя, которую следует нажимать для включения экономичного режима работы. Эту же клавишу следует нажимать первой для мягкого включения, а спустя 0,1…0,5 с — SA2 (обычный режим. 100% мощности). Зеленый свет свечения двухцветного светодиода HL2 указывает на экономичный режим работы лампы HL1.Как понятно, нити ламп накаливания в холодном состоянии имеют малое сопротивление. Поэтому при включении ламп, пока они не разогрелись и их сопротивление не выросло, наблюдается бросок тока, в в…10 раз превышающий номинальный ток лампы. Такая «стартовая» перегрузка приводит к постепенному разрушению нитей накала, и перегорают лампы чаще всего именно при включении.ИМВ позволяет в 3…10 раз увеличить ресурс ламп при соблюдении правильной последовательности включения. Трморегулятор на к157уд2 Сначала нужно замыкать клавишу SA1 (при этом цвет индикатора изменяется с красного на зеленый), а спустя 0,1…0,5 с — SA2 (при этом индикатор гаснет).В исходном (разомкнутом) состоянии SA1 и SA2 индикатор HL2 светится красным цветом, так как через элементы HL1.R1 и HL2 протекает переменный ток. «Зеленая» часть HL2 также излучает, но из-за большей яркости свечения •красной» части, зеленый оттенок практически незаметен. Ток. протекающий через цепь HL1-R1-HL2 несравнимо мал по отношению к рабочему току HL1, поэтому лампа не светится.При замыкании SA1 положительные полуволны сетевого напряжения через диод VD1 поступают на лампу HL1, и она светится вполнакала. Замыкание контактов 5А1 шунтирует «красную» часть светодиода HL2. и он меняет цвет свечения с красного на зеленый. Если не ну…
Смотреть описание схемы …

Читайте также:  Как Намотать Трансформатор? Вторичная Обмотка 12В, 0, 5А. (Расчёт И Перемотка Трансформатора 4.2)

Быстродействие

Этот параметр зависит от максимальной допустимой частоты, когда может осуществляться переключение сигналов. Это в свою очередь зависит от длительности переходного процесса, что определяется инерционностью транзистора, а также влиянием паразитных параметров. Для характеристики быстродействия логического элемента часто указывают среднее время, которое происходит при задержке сигнала, при его передаче в транзисторный ключ. Схема, отображающая его, обычно именно такой усреднённый диапазон отклика и показывает.

Взаимодействие с другими ключами

Для этого используются элементы связи. Так, если первый ключ на выходе имеет высокий уровень напряжения, то на входе второго происходит открытие и работает в заданном режиме. И наоборот. Такая цепь связи существенно влияет на переходные процессы, что возникают во время переключения и быстродействия ключей. Вот как работает транзисторный ключ. Наиболее распространёнными являются схемы, в которых взаимодействие совершается только между двумя транзисторами. Но это вовсе не значит, что это нельзя сделать устройством, в котором будет применяться три, четыре или даже большее число элементов. Но на практике такому сложно бывает найти применение, поэтому работа транзисторного ключа такого типа и не используется.

402

00155

501

00337

405

401

406

1003

2022

403

1016

Для схемы «ПРИЕМ ВОСЬМИ КАНАЛОВ В ТЕЛЕВИЗОРЕ УПИМЦТ»

ТелевидениеПРИЕМ ВОСЬМИ КАНАЛОВ В ТЕЛЕВИЗОРЕ УПИМЦТНаходящиеся в эксплуатации телевизоры УПИМЦТ оснащены блоками СВП-4, обеспечивающими прием по шести каналам. В настоящее пора этого уже мало. Модернизация телевизоров УПИМЦТ путем замены СВП-4 блоками телевизоров пятого поколения, обеспечивающими прием по 55 каналам — довольно дорогая и сложная процедура. Предлагается немаловажно более дешевая и простая доработка имеющихся блоков СВП-4, которая позволяет вести прием дополнительно по двум каналам. Суть доработки содержится в следующем. В схеме устройства выбора программ блока СВП-4 [1] применен вариант включения двоично-десятичного дешифратора К155ИД1 [2], при котором задействованы только входы Акционерное Общество(а), Al, A2 и, соответственно, выходы YO…Y6. При этом возможен прием по восьми каналам, однако на плате выходы Y2, Y3 и Y6 (выводы 8,9 и 10 соответственно) объединены, чем число принимаемых каналов уменьшено до шести. Следовательно, если удалить перемычки, соединяющие сообща выводы 8, 9 и 10 дешифратора, и подключить к выводам 8 и 9 узел, принципиальная схема которого показана на рисунке, становится возможным прием двух дополнительных каналов. к157уд2 усилитель мощности Узел выбора дополнительных программ состоит из двух идентичных каналов. Рассмотрим один из них. Резистор R1 по назначению аналогичен резисторам R8…R13 устройства выбора программ блока СВП-4, а диоды VD1, VD2 и переменный резистор R2 — одному каналу устройства предварительной настройки блока СВП-4 (например VD14 и R61 в [1] соответственно). В целях упрощения и удешевления доработки при незначительном снижении удобства пользования узел выбора дополнительных программ не имеет функции индикации выбранной программы. По этим же соображения исключена и функция переключения диапазонов, которая в блоке СВП-4 выполняется переключателями В1…В6 устройства предварительной настройки. Предлагается фиксированное подключение катодов диодов VD1 и VD3 к плате п…
Смотреть описание схемы …

Что выбрать

транзисторный ключ 12 вольт
С чем лучше работать? Давайте представим, что у нас есть простой транзисторный ключ, напряжение питания которого составляет 0,5 В. Тогда с использованием осциллографа можно будет зафиксировать все изменения. Если ток коллектора выставить в размере 0,5мА, то напряжение упадёт на 40 мВ (на базе будет примерно 0,8 В). По меркам задачи можно сказать, что это довольно значительное отклонение, которое накладывает ограничение на использование в целых рядах схем, к примеру, в коммутаторах аналоговых сигналов. Поэтому в них применяются специальные полевые транзисторы, где есть управляющий р–n-переход. Их преимущества над биполярными собратьями такие:

  1. Незначительное значение остаточного напряжения на ключе в состоянии проводки.
  2. Высокое сопротивление и, как результат – малый ток, что протекает по закрытому элементу.
  3. Потребляется малая мощность, поэтому не нужен значительный источник управляющего напряжения.
  4. Можно коммутировать электрические сигналы низкого уровня, которые составляют единицы микровольт.

Транзисторный ключ реле – вот идеальное применение для полевых. Конечно, это сообщение здесь размещено исключительно для того, чтобы читатели имели представление об их применении. Немного знаний и смекалки – и возможностей реализаций, в которых есть транзисторные ключи, будет придумано великое множество.

kr1182pm01-temnitel

kr1182pm03-dimfull

kr1182pm04-dimsch

kr1182pm05-dimshild

kr1182pm02-dim1

kr1182pm06-abt

kr1182pm07-system

kr1182pm08-target

kr1182pm09-modul

kr1182pm10-total

kr1182pm11-box

Для схемы «АВТОМАТ-ЭКОНОМ ЭЛЕКТРОЭНЕРГИИ»

Бытовая электроникаАВТОМАТ-ЭКОНОМ ЭЛЕКТРОЭНЕРГИИ Чтобы понапрасну не горели ярким светом лампы освещения в подъезде дома, в прихожей офиса фирмы, в коридоре многокомнатной квартиры, довольно дополнить настенный сетевой выключатель автоматом-экономом, который будет постоянно обеспечивать минимальную освещенность и только после нажатия на пусковую кнопку на несколько минут включать осветительную лампу на полную мощность. Такой автомат позволит снизить энергопотребление не менее чем вдвое. Там же, где нет выключателя, например в обычном многоэтажном доме, его нетрудно установить на первом этаже, а на лестничных площадках остальных этажей расположить дублирующие кнопки, подключенные параллельно основной. Автомат-эконом (рис.1), представляющий собой тринисторный регулятор мощности с фазоимпульсным менеджментом, включают в электросеть последовательно с осветительной лампой накаливания (EL1). При замкнутых контактах выключателя
SB2 переменное напряжение сети выпрямляется диодным мостом VD3. регулятор мощности на симисторе тс122-25 С его выхода пульсирующее напряжение поступает на тринистор VS1 и через стабилизатор напряжения R5VD2 — на однопереходный транзистор VT2. С началом каждой полуволны сетевого напряжения происходит зарядка конденсатора С1 через резисторы R3, R2 и полевой транзистор VT1. В моменты, когда конденсатор заряжается до напряжения открывания однопереходного транзистора, он быстро разряжается через открытый переход этого транзистора и цепь управляющего электрода тринистора. Это приводит к открыванию тринис-тора и подаче напряжения сети на лампу EL1. Чем меньше зарядный ток конденсатора С1, тем позднее откроется тринистор и тем тусклее светится лампа. В исходном состоянии, являющемся дежурным режимом работы устройства, конденсатор С2 разряжен, поэтому транзистор VT1 закрыт. В это час зарядный ток конденсатора С1 протекает через подстроечный резистор R3, которым устанавливают яркость свечения лампы дежурного освещения…
Смотреть описание схемы …

Читайте также:  Phobia v2 RDA – вторая версия дрипки Фобия от Alex VapersMD and Vandy Vape

Пример работы

Давайте рассмотрим более детально, как функционирует простой транзисторный ключ. Коммутируемый сигнал передаётся с одного входа и снимается с другого выхода. Чтобы запереть ключ, на затвор транзистора используют подачу напряжения, которое превышает значения истока и стока на величину, большую в 2-3 В. Но при этом следует соблюдать осторожность и не выходить за пределы допустимого диапазона. Когда ключ закрыт, то его сопротивление относительно большое – превышает 10 Ом. Такое значение получается благодаря тому, что дополнительно влияет ещё и ток обратного смещения p-n перехода. В этом же состоянии емкость между цепью переключаемого сигнала и управляющим электродом колеблется в диапазоне 3-30 пФ. А теперь откроем транзисторный ключ. Схема и практика покажут, что тогда напряжение управляющего электрода будет близиться к нулю, и сильно зависит от сопротивления нагрузки и коммутируемой характеристики напряжения. Это обусловлено целой системой взаимодействий затвора, стока и истока транзистора. Это создаёт определённые проблемы для работы в режиме прерывателя.

В качестве решения данной проблемы были разработаны различные схемы, которые обеспечивают стабилизацию напряжения, что протекает между каналом и затвором. Причем благодаря физическим свойствам в таком качестве может использоваться даже диод. Для этого его следует включить в прямое направление запирающего напряжения. Если будет создаваться необходимая ситуация, то диод закроется, а р-n-переход откроется. Чтобы при изменении коммутируемого напряжения он оставался открытым, и сопротивление его канала не менялось, между истоком и входом ключа можно включить высокоомный резистор. А наличие конденсатора значительно ускорит процесс перезарядки емкостей.

Для схемы «Обустройство туалета»

Автоматическое выключение света в туалете издавна тревожит радиолюбителей. Свет забывают выключать в туалете почти все. Однако, «проблема» решается не полностью, забывают о «братьях наших меньших», обитающих в большинстве наших домов.На рисунке показана принципиальная схема решения «проблемы». Параллельно контактам выключателя
освещения туалета SB1 через ограничительный резистор R1 последовательно включены неоновые лампочки HL2, HL3 и аналогичная цепь R2, HL4. Параллельно лампочке освещения HL1 включен трехфазный мотор вентилятора вытяжки М1 типа ВН-2 (применяется в компьютере ЕС-1841). Необходимый сдвиг фаз при напряжении сети 220 В 50 Гц обеспечивается конденсатором С1 типа К75-10 0,47 мкФ 250 В 50 Гц.Когда выключатель освещения SB1 выключен, горят неоновые лампочки HL2…HL4. так как они подключены к сети через внутренние сопротивления лампочки освещения туалета HL1 и обмотки мотора вентилятора М1. Лампочки HL2, HL3 выбраны типа 95СГ-9 (максимальное напряжение 95 В и ток 3 мА) и располагаются внутри туалета, освещая его для кошек. ксв метр схемы своими руками HL4 типа МН-6 и резистор R2 располагаются в корпусе выключателя SB1, если корпус не полупрозрачен, в корпусе выключателя напротив HL4 просверливается дырочка 0 4 мм. Горение HL4 сигнализирует о том, что туалет свободен, отсутствие горения — о том, что туалет занят или о разрыве цепи питания HL4.При включении SB1 загорается лампочка освещения туалета HL1 и включается вентилятор вытяжки М1. На схеме пунктиром обозначены элементы уже стоящие в каждом туалете.Замена неоновых лампочек 95СГ-9 на другие нежелательна из-за их меньшей яркости, иного спектра излучения, меньшей экономичности.Замена МН-6 возможна на последовательную цепочку, состоящую из диода, резистора, светодиода АЛ307В, АЛ307Г. Зеленый цвет свечения светодиодов желате…
Смотреть описание схемы …

Расчет транзисторного ключа

расчет транзисторного ключа
Для понимания привожу пример расчета, можете подставить свои данные:

1) Коллектор-эмиттер – 45 В. Общая рассеиваемая мощность — 500 mw. Коллектор-эмиттер – 0,2 В. Граничная частота работы – 100 мГц. База-эмиттер – 0,9 В. Коллекторный ток – 100 мА. Статистический коэффициент передачи тока – 200.

2) Резистор для тока 60 мА: 5-1,35-0,2 = 3,45.

3) Номинал сопротивления коллектора: 3,45,06=57,5 Ом.

4) Для удобства берём номинал в 62 Ом: 3,4562=0,0556 мА.

5) Считаем ток базы: 56200=0,28 мА (0,00028 А).

6) Сколько будет на резисторе базы: 5 – 0,9 = 4,1В.

7) Определяем сопротивление резистора базы: 4,1,00028 = 14,642,9 Ом.

Оцените статью
Добавить комментарий