BassBox Pro 6 – одна из лучших, в своем роде, программ для расчёта акустических систем всех типов: закрытый ящик, фазоинвертор, bandpass, а также для замера параметров динамических головок. Огромная база данных параметров динамиков, практически всех, известных производителей.
Bcalc – расчет выпрямителя с Г-фильтром. Не требует установки.
Edge – программа для расчета эффекта бафла для акустических систем. На английском. Установка не требуется. Файл находится в архиве.
Coil Calculator 1.01 – программа для расчета катушек индуктивности, на русском. Однослойные и многослойные катушки. Каркас катушки, количество витков и индуктивность. Установка не требуется. Файлы в находятся в архиве.
Generator – простой генератор (от 0,1 Гц), на английском, не требует установки.
JBL Speaker Shop – две программы: по расчету корпуса для НЧ динамика Enclosure Module и расчету пассивного фильтра для многополосных акустических систем Crossover Module. Enclosure Module – это программное обеспечение помогает определить объем и размеры корпуса и оценить качество звучания. Конструкция анализируется в два этапа. Crossover Module – данное программное обеспечение позволяет производить расчет двух- и трех- полосных пассивных фильтров от первого (6 дБ/окт.) до четвертого (24 дБ/окт) порядка и целого ряда типов фильтров: Bessel, Butterworth, Chebychev, Gaussian, Legendre, Linear-Phase и Linkwitz-Riley.
Movavi – легкая и удобная программа для работы с музыкой, видео и изображениями.
Power Sup – Программа предназначена для широкого круга радиолюбителей и позволяет полностью рассчитать источник питания для усилителя мощности звуковой частоты. Она учитывает особенности потребления энергии при звуковоспроизведении и обладает достаточно высокой точностью.
sPlan 7.0 – очень удобная и простая программа для рисования схем, чертежей с большим выбором элементов. Русская версия.
Sprint Layout 5.0 – простая программа для создания двухсторонних и многослойных печатных плат. Программное обеспечение включает в себя многие элементы, необходимые в процессе разработки полного проекта. Sprint-Layout позволяет наносить на плату Контакты, SMD-контакты, проводники, полигоны, текст и так далее. Контактные площадки могут быть выбраны из широкого набора. Широко используется любителями для подготовки рисунка для изготовления платы методом “лазерного утюга”.
TQWP-RUS – данная программа представляет собой EXCEL-евский файл, в котором собран инструментарий для расчёта корпусов Tapered Quarter Wave Pipes (Tube) Коническая Четверть Волновая Труба, описанный Полем Войтом в 30-х годах прошлого века. За основу был взят файл John Rutter по расчетам David B. Weems, сделана попытка минимизировать разброс параметров вычислений допущенных в этом файле, произведена адаптация под метрическую систему мер. Также автор добавил блок расчёта деталей корпуса с возможностью вывода на печать эскизов с размерами.
TS Calc – калькулятор для расчета эквивалентного объема по принципу добавочной массы и известного объема на основе данных резонансов измеряемого динамика. А также расчет добротностей.
3 осциллографа – 3 виртуальных программы, не требуют установки.
Калькулятор по элементам – программа для расчета колебательных контуров, фильтров, индуктивностей, сопротивлений и трансформаторов. А также маркировка сопротивлений, дросселей и SMD транзисторов. Возможность подбора аналогов микросхем и транзисторов.
Расчет площади радиатора– программа-калькулятор для расчета примерной площади радиатора, для транзисторов, микросхем и деталей, которые рассеивают тепло. Формат файла [.xls] в архиве.
Расчет резистора по цвету – программа для определения номинала постоянных резисторов по цветовой маркировки. Установка не требуется. Файлы находится в архиве.
Транзистор 1.0 – программа для определения транзисторов по корпусу и маркировке. Требуется установка. Файл в архиве.
RLC-meter 1.11 – программа для измерения сопротивления, индуктивности и емкости неизвестных электронных компонентов. Требует изготовления простейшего переходника для подключения к звуковой карте компьютера (два штекера, резистор, провода и щупы). В качестве тестового сигнала используется сигнал синусоидальной формы, генерируемый звуковой картой. В этой версии программы используется только одна фиксированная частота 11025 Гц. Описание программы.
RLC-meter 2.16 – программа для измерения сопротивления, индуктивности и емкости неизвестных электронных компонентов. Требует изготовления простейшего переходника для подключения к звуковой карте компьютера (два штекера, резистор, провода и щупы). В качестве тестового сигнала используется сигнал синусоидальной формы, генерируемый звуковой картой. В предыдущей версии программы использовалась только одна фиксированная частота 11025 Гц, в этой версии к ней добавилась вторая (в 10 раз меньшая). Это позволило расширить верхние границы измерений для емкостей и индуктивностей. Описание программы.
Данная программа представляет собой EXCEL-евский файл, в котором собран инструментарий для расчёта корпусов Tapered Quarter Wave Pipes (TQWP) или свернутый рупор или труба Войта, который описал данное акустическое решение в 30-х годах XX века.
Лист «Расчет TQWP»
Блок расчета содержит все необходимые данные для вычисления размеров корпуса. Нужно заметить, что все размеры внутренние, добавляйте тощину материалов.
Данные можно вводить только в ячейки подсвеченные белым цветом и только в миллиметрах, остальные ячейки информационные и защищены от редактирования.
Рис. 1. Интерфейс программы расчтеа корпуса TQWP
В принципе все просто, но данные, по которым могут возникнуть вопросы постараюсь объяснить.
Толщина материала внутренней перегородки: желательно брать плотный материал не подверженный резонансу (ДСП, фанера, лучше бакелитовая), толщиной не менее 20 мм, так, как перегородка является элементом крепления боковых панелей.
Внешний диаметр корзины динамика: внешние габариты динамика.
Диаметр эффективной части диффузора: желательно брать данные, предоставленные производителем, но можно и измерить самим, нужно измерить расстояние между центрами подвеса диффузора, что тоже близко к истине.
Диаметр посадочного отверстия: пригодится при расчете деталей корпуса.
Собственная резонансная частота динамика: необходима для автоматического расчета частоты настройки корпуса TQWP.
Глубина закрытой части рупора: глубина площадки закрытого конца рупора (конуса). Категорически не рекомендуется делать больше 25–50 мм. Изменяя этот параметр можно в небольших пределах менять положение динамика по вертикали на передней панели.
Эффективная площадь диффузора: вычисляется автоматически.
Площадь открытой части рупора: равна 2,5-ой эффективным площадям диффузора. Вычисляется автоматически.
Площадь закрытой части рупора: вычисляется автоматически.
Позиция динамика: расстояние от закрытого конца рупора до центра посадочного отверстия динамика. Вычисляется автоматически.
Ширина корпуса: по умолчанию за ширину корпуса принимается внешний диаметр корзины головки. При желании изменить ширину корпуса, нужно подставить значение, на которое увеличится ширина с каждой стороны.
Глубина корпуса: внутренняя глубина корпуса. Вычисляется автоматически.
Высота корпуса: внутренняя высота корпуса. Вычисляется автоматически.
Глубина открытой части рупора: вычисляется автоматически.
Длина перегородки: вычисляется автоматически.
Высота порта: вычисляется автоматически.
Площадь порта: равна эффективной площади диффузора.
Внутренний объем корпуса: вычисляется автоматически.
Длина свернутого рупора: равна 1/4 длины волны, частоты настройки корпуса. Вычисляется автоматически.
Внешний диаметр ВЧ головки: если не предполагается использование ВЧ головки этот параметр можно упустить.
Диаметр посадочного отверстия ВЧ головки: Если не предполагается использование ВЧ головки этот параметр можно упустить.
Акустика
Зачем вообще нужно акустическое оформление? На НЧ размеры излучателя звука очень малы сравнительно с длиной звуковой волны. Если просто положить динамик на стол, волны от фронтальной и тыльной поверхностей диффузора тут же сойдутся в противофазе, погасят друг друга, и басов вообще слышно не будет. Это называется акустическим коротким замыканием.
Просто заглушить динамик с тыла на НЧ нельзя: диффузору придется сильно сжимать малый объем воздуха, отчего частота резонанса ПС «прыгнет» так высоко, что динамик просто не сможет воспроизвести басы. Отсюда следует главная задача любого акустического оформления: либо погасить излучение от тыльной стороны ГГ, либо перевернуть его на 180 градусов и в фазе переизлучить с фронта АС, не допуская в то же время расходования энергии движения диффузора на термодинамику, т.е.
Назначение корпуса АС с акустическим оформлением – обеспечить наилучшее воспроизведение НЧ. Прочность, устойчивость, внешний вид – само собой. Акустически домашние АС оформляются в виде щита (динамики, встроенные в мебель и строительные конструкции), открытого ящика, открытого ящика с панелью акустического сопротивления (ПАС), закрытого ящика нормального или уменьшенного объема (малогабаритные акустические системы, МАС), фазоинвертора (ФИ), пассивного излучателя (ПИ), рупоров прямого и обратного, четвертьволнового (ЧВ) и полуволнового (ПВ) лабиринтов.
Встроенная акустика – предмет особого обсуждения. Открытые ящики из эпохи ламповых радиол, получить от них в квартире приемлемое стерео нереально. Из прочих начинающему для первой своей АС лучше всего остановить выбор на ПВ лабиринте:
- В отличие от прочих, кроме ФИ и ПИ, ПВ лабиринт позволяет улучшить басы на частотах ниже собственной резонансной частоты динамика НЧ.
- Сравнительно с ФИ ПВ лабиринт конструктивно и в настройке несложен.
- По сравнению с ПИ ПВ лабиринт не требует дорогих покупных дополнительных компонент.
- Коленчатый ПВ лабиринт (см. ниже) создает ГГ достаточную акустическую нагрузку, имея в то же время свободную связь с атмосферой, что дает возможность применять НЧ ГГ и с длинным, и с коротким ходом диффузора. Вплоть до замены в уже построенных АС. Разумеется, только парой. Излученная волна в таком случае будет практически сферической.
- В отличие от всех, кроме закрытого ящика и ЧВ лабиринта, акустическая колонка с ПВ лабиринтом способна сгладить АЧХ НЧ ГГ.
- АС с ПВ лабиринтом конструктивно легко вытягиваются в высокую тонкую колонну, что облегчает их размещение в небольших помещениях.
Насчет предпоследнего пункта – вы удивлены, если опытный? Считайте это одним из обещанных откровений. И см. ниже.
ПВ лабиринт
глубина щели – четверть длины волны частоты ее настройки. В этом легко убедиться, замерив с помощью остронаправленного микрофона уровни звука перед фронтом динамика и в раскрыве щели. Резонанс на кратных частотах подавляется выстилкой щели звукопоглотителем. АС с глубокой щелью тоже демпфирует любые динамики, но повышает их резонансную частоту, хотя и меньше, чем закрытый ящик.
Устройство и принцип действия акустической системы с лабиринтом
Исходный элемент ПВ лабиринта – открытая полуволновая труба, поз. 3. Как акустическое оформление она непригодна: пока волна с тыла доберется до фронта, ее фаза перевернется еще на 180 градусов, и получится все то же акустическое короткое замыкание. На АЧХ ПВ труба дает высокий резкий пик, вызывающий запирание ГГ на частоте настройки Fн.
Простейший способ превратить трубу в лабиринт – перегнуть ее пополам, поз. 4. Это не только сфазирует фронт с тылом, но и сгладит резонансный пик, т.к. пути волн в трубе теперь будут различны по длине. Таким способом в принципе можно сгладить АЧХ до любой наперед заданной степени ровности, наращивая количество колен (оно должно быть нечетным), но на деле использовать более 3-х колен получается очень редко – мешает затухание волны в трубе.
В камерном ПВ лабиринте (поз. 5) колена разбиты на т. наз. резонаторы Гельмгольца – сужающиеся к заднему концу полости. Это еще улучшает демпфирование ГГ, сглаживает АЧХ, уменьшает потери в лабиринте и увеличивает эффективность излучения, т.к. тыльное выходное окно (порт) лабиринта всегда работает с «подпором» со стороны последней камеры.
Разгородив камеры на промежуточные резонаторы, поз. 6, можно с диффузорной ГГ добиться АЧХ, почти удовлетворяющей требования абсолютного Hi-Fi, но настройка каждой из пары таких АС требует где-то от полугода (!) труда опытного специалиста. Когда-то в некоем узком кругу лабиринтно-камерную АС с разделением камер прозвали кремоной, с намеком на уникальные скрипки итальянских мастеров.
На деле для получения АЧХ под высокий Hi-Fi оказывается достаточно всего пары камер на колено. Чертежи АС такой конструкции даны на рис; слева – российской разработки, справа – испанской. Та и другая – очень хорошая напольная акустика. «Для полного счастья» россиянке не мешало бы позаимствовать и испанки связи жесткости, поддерживающие перегородку (буковые палочки диаметром 10 мм), а взамен дать сглаживание изгиба трубы.
Чертежи напольных акустических систем с лабиринтом
В обеих этих АС проявляется еще одно полезное свойство камерного лабиринта: его акустическая длина больше геометрической, т.к. звук несколько задерживается в каждой камере, прежде чем пройдет дальше. По геометрии эти лабиринты настроены где-то на 85 Гц, но измерения показывают 63 Гц. Реально нижняя граница частотного диапазона оказывается 37-45 Гц в зависимости от типа НЧ ГГ. Если динамики с расфильтровкой от S-30B переставить в такие корпуса, звук меняется поразительно. В лучшую сторону.
Чертеж акустической системы Jet Flow
Диапазон мощностей возбуждения для данных АС – 20-80 Вт пиковых. Звукопоглощающая выстилка там и там – синтепон 5-10 мм. Настройка не всегда необходима и несложна: если бас глуховатый, порт симметрично с обоих сторон прикрывают кусочками пенопласта до получения оптимального звучания. Делать это нужно не спеша, каждый раз прослушивая по 10-15 мин один и тот же отрезок фонограммы. В нем обязательно должны быть сильные СЧ с крутой атакой (контроль СЧ!), напр., скрипка.
Читать далее: Схемы зарядных устройств для автомобильных акб: как сделать своими руками
Jet Flow
Камерный лабиринт успешно сочетается с обычным извитым. Пример – настольная акустическая система Jet Flow (реактивный поток) разработки американских радиолюбителей, произведшая в 70-х настоящий фурор, см. рис. справа. Ширина корпуса по внутри – 150-250 мм под динамики 120-220 мм, в т.ч. «резвые» и автодинамики. Материал корпуса – сосна, ель, МДФ. Звукопоглощающая выстилка и настройка не требуются. Диапазон мощностей возбуждения – 5-30 Вт пиковых.
Сгладить АЧХ автодинамиков и «резвых» можно и в обычном извитом лабиринте, устроив перед входом в него компрессионную демпфирующую (не резонирующую!) предкамеру, обозначена K на рис. ниже.
Мини акустическая система для ПК (домашнего компьютера)
Эта мини-акустика предназначена для ПК взамен старой дешевой. Динамики используются те же, но как они звучать начинают – просто удивительно. Если диффузор с шелком, иначе смысла нет огород городить. Дополнительное достоинство – цилиндрический корпус, на котором интерференция СЧ близка к минимальной, меньше она только на сферическом корпусе.
- На дет. 9 клеят пылевой фильтр (можно использовать обрывки капроновых колготок);
- Дет. 8 и 9 оклеивают синтепоном (обозначено желтым на рис.);
- Собирают пакет перегородок на стяжке и проставках;
- Вклеивают синтепоновые кольца, обозначенные зеленым;
- Пакет оборачивают, проклеивая, ватманом до толщины стенок в 8 мм;
- Обрезают корпус в размер и оклеивают предкамеру (выделено красным);
- Вклеивают дет. 3;
- После полной просушки шкурят, красят, приделывают подставку, монтируют динамик. Провода к нему проходят по изгибам лабиринта.
О рупорах
У рупорных АС высокая отдача (вспомните, зачем он вобще, рупор-то). Старая 10ГДШ-1 через рупор орет так, что уши вянут, а соседи «счастливы по самое не могу», отчего рупорами многие и увлекаются. В домашних АС используются извитые рупоры как менее громоздкие. Обратный рупор возбуждается тыльным излучением ГГ и с ПВ лабиринтом сходен тем, что поворачивает фазу волны на 180 градусов. Но в остальном:
- Конструктивно и технологически много сложнее, см. рис. ниже.
- Не улучшает, а наоборот, портит АЧХ АС, т.к. АЧХ любого рупора неравномерна и рупор не является резонирующей системой, т.е. исправить его АЧХ нельзя в принципе.
- Излучение из порта рупора существенно направленно, а волна его скорее плоская, чем сферическая, так что хорошего стереоэффекта ждать не приходится.
- Не создает значительной акустической нагрузки ГГ и в то же время требует значительной мощности для возбуждения (еще вспомним – шепчут ли в переговорный рупор). Динамический диапазон рупорных АС можно вытянуть в лучшем случае до базового Hi-Fi, и у поршневых динамиков с очень мягким подвесом (стало быть, хороших и дорогих) диффузор при установке ГГ в рупор вырывается очень даже не редко.
- Дает призвуков больше любого другого типа акустического оформления.
Формулы применяемые при расчете TQWP
В таблице расчета TQWP сознательно допущена неточность по сравнению с оригинальным файлом. Вопрос в том, что считать открытым концом рупора, днище корпуса или расстояние от верхней части порта до задней стенки?
По моему убеждению, порт не является частью резонатора. Хотя это мое, личное мнение. Я могу и ошибаться. Согласно расчетам David B. Weems фактическая длина рупора может быть на 20% больше расчетной, так что, даже если я ошибаюсь, погрешность все равно в пределах допустимой нормы.
Лист «Корпус TQWP»
Здесь автор предлагает наиболее простой вариант чертежа TQWP. В конструкции предусмотрена возможность установки ВЧ головки. Так как размеры корпуса достаточно внушительные, желательно применять материал не менее 20–25 мм толщиной.
Передняя панель состоит из двух элементов: основной панели, на которую крепится широкополосный динамик и декоративной панели, которая приклеивается и притягивается саморезами к основной панели. Широкополосный динамик устанавливается в корпус снаружи, впотаи, ВЧ внахлест.
Дабы придать большую жесткость, нижняя панель тоже выполнена в виде бутерброда. Для придания респектабельного вида, предлагается два гриля, верхний прикрывающий динамики и нижний, закрывающий отверстие порта.
Рис. 3. Лист «Корпус TQWP»
Краткое описание вводимых данных.
Передняя панель: толщина материала основной передней панели.
Передняя декоративная панель: толщина материала декоративной передней панели.
Задняя панель: толщина материала задней панели.
Тем, кто не устал
Совсем уж практическая сторона. Итак, выбор динамических головок позади, выбор конструктива (лабиринт-канал) тоже. По рекомендации Рогожина установил программу Hornresp австралийского разработчика. Выполнив пошаговые инструкции, получил первый результат. Скажу так, практически вслепую пришлось выполнить не менее сотни расчетов для обеспечения всех требований. К чему нужно стремиться – инструкции даны Рогожиным. Далее делюсь собственным опытом.
Здесь представлено пять вариантов корпусов для одного типа динамика. Все варианты, кроме последнего (это шестой вариант, полученный переделкой пятого), выполнены в размере 1520 мм в высоту (высота фанерного листа). Ширина и глубина корпусов различная и зависит от расчетного сечения канала. Внутренняя архитектура – тоже различная.
Первый вариант (правый корпус на первом фото) выполнен из фанеры 15 мм. Масса корпуса — около 70 кг (без отделки). Все последующие – фанера 12 мм и масса от 35 до 55 кг. Легкие вибрации незначительных участков поверхности на корпусах акустики толщиной 12 мм присутствуют при подаваемой мощности в 100 Вт.
Таким образом, при комфортном уровне громкости вибрации корпуса и призвуки не отмечены. Призвуков, кстати, не отмечено при любом уровне громкости.
- Особенности, выявленные в процессе набора опыта следующие:
- Сначала было непонятно объяснение в п.9 инструкции Рогожина о параметрах Con (1) и Con (2). Лишь позже понял, что это длины двух участков резонансного канала. Вместе они составляют общую длину канала, влияющую на частоту настройки. И выражаются они в сантиметрах.
- На больших динамиках обеспечить предложенный в инструкции вариант сворачивания канала приведет к росту высоты АС. Пришлось изобретать. Окончательный принципиальный вариант, принятый для работы такой:
Конечно, за время строительства шести вариантов была отработана технология изготовления, детали конструкции АС, способы сворачивания большого канала. Вживую внутренности АС имеют такой вид:
И так далее.
- Обратил внимание на некоторую некорректность работы программы. Например, при расчете удается обеспечить групповые временные задержки (ГВЗ) в пределах рекомендуемой нормы. При печати результата расчета, диаграмма ГВЗ имеет серьезные искажения, недопустимые выбросы, которые не соответствуют действительности.
Т.е. расчетные выбросы ГВЗ не превышают 20мс (копия экрана — слева), а при печати они же выпадают до значения в 670мс (правое изображение). Внимание, изготовленная по приведенному расчету АС обеспечила ровную работу, без призвуков и неравномерности. Нужно верить левому изображению.
- Накопленный опыт позволяет предложить следующие рекомендации при выполнении расчетов:
- Частота настройки канала АС лучше, если будет находиться рядом с резонансной частотой головки. Можно выше, но кому это нужно?
- Обращайте внимание на обеспечение горизонтальности участка настройки АЧХ канала от резонанса и выше. Подтверждаю, незначительный подъем АЧХ в зоне резонанса (в приведенном рисунке соответствует частоте 38,36 Гц) хорошо ощущается «на слух» во время работы АС.
- При установке зоны размещения 1пи – АС у стенки (параметр Ang), отдача для музыкальной АС не должна превышать 102-104 дБ (выше, набивает голову даже при низкой громкости и приходится выкручивать НЧ ниже нуля). Создается впечатление мятого баса, его становится реально много. Обратите внимание, оптимизированная отдача АС дана для чувствительного динамика (-99 дБ). Подозреваю, что при использовании динамика с меньшей чувствительностью отдачу АС нужно будет соответственно уменьшить.
- При расчетах можно обеспечить настройку канала на частоту ниже резонанса динамика. Можно обеспечить суммарную отдачу АС заметно выше самого динамика. В первом случае (частота настройки ниже резонанса) – получаем размытость баса, сниженную артикуляцию. Чем ниже настройка от резонанса, тем заметнее эффект. Во втором случае (испытал вариант с давлением АС около 107,5 дБ) – бас становится как бы забитым, мощным, неразборчивым. Слушать тяжело. Быстро устаешь от такого звука.
- Было замечено, что объем камеры гашения третьей моды (КГТМ – мой термин), которая находится в зоне канала S1-S2, напрямую влияет на качество гашения этой моды. Уменьшаем объем КГТМ при сохранении длинны участка канала, размах моды растет (на рисунке выше ее всплеск соответствует частоте чуть выше 100 Гц) и напротив, с ростом объема КГТМ всплеск моды уменьшается. Изменение объема КГТМ выполнял изменением площади сечения S1.
Читать далее: Описание и расположение предохранителей Volkswagen Tiguan фото
Эскизы чертежей TQWP
После того, как введены все обязательные параметры материалов, необходимых для построения корпуса, можно распечатать эскизы чертежей, нажатием кнопки «Распечатать эскизы». На печать будут выведены 8 листов формата А4 с указанием размеров. К сожалению эскизы не маштабированы.
Необходимо отметить, что эскиз гриля будет распечатан в 2-х вариантах, для одного динамика и для двух ( включая ВЧ ). Выбирайте какой больше нравится.
Рис. 4. Эскизы чертежей TQWP
Лист «Примеры демпфирования трубы Войта»
Показано влияние на АЧХ размещения демпфирующего материала в корпусе.
Рис. 5. Примеры демпфирования трубы Войта
Рис. 6. Лист «Рекомендации по демпфированию колонок TQWP»
Рис. 7. Лист «Расчёт длины волны свернутого рупора»
Если кто-то воспользовался этой программой для расчета и изготовления АС, не сочтите за труд, написать пару слов Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript о своих впечатлениях, замечаниях и предложениях. Автор будет благодарен, за небольшой репортаж о проведенных вами работах.
Эта статья была написана мной в 2010 году, тогда же, когда я и собрал эти колонки. Естественно, их уже давно нет, хотя динамики лежат на полке и ждут своего часа — есть у меня желание сделать полочную акустику для компьютера, но пока нет на это времени.
В качестве напольной акустики, правда, для домашнего кинотеатра служат Yamaha NS-777 в комплекте с тылами и центром из этой же серии. Звук, конечно, довольно-таки посредственный, но и брал я их ради внешнего вида — они хорошо вписываются в интерьер гостиной, да и фильмы смотреть — не музыку слушать.
Так что, скорее всего, напольную акустическую систему, ни традиционную, ни TQWP, я делать уже не буду. Никогда.
Итак, наконец, мой долгострой практически завершён. Вернее, завершён первый этап (по большому счёту, и последний — прим. от 2016 г.) конструирования акустической системы TQWP. Так сказать, пробный. Ибо, я попробовал сделать, прослушал и сделал выводы.
Так как хочется видеть более-менее законченную статью, я решил собрать все материалы воедино и здесь же поделиться своими впечатлениями и выводами.
Выбор
Вопрос построения АС был начат с изучения теории и сопутствующих материалов. Передо мной, как и перед многими строителями собственных акустических систем, встал вопрос выбора акустического оформления. Знания, информация, мнения начали копиться и систематизироваться, но ответ на вопрос о типе акустического оформления АС оставался открытым.
В это время моему напарнику стали доступными три широкополосные головки 75ГДШ3-1. В местном ДК задумали выбросить два сценических сабвуфера, проработавших на протяжении 30-ти с лишним лет. В каждом стояло по два динамика. В одном из них динамик вышел из строя, отсюда и решение выбросить. Прослушивание динамиков «на полу» подтвердило ожидание «отсутствующего звука».
Прослушивание в родном сабвуферном корпусе – оценки не изменило. Практически без энтузиазма начал копать интернет на тему применения в АС динамиков имеющегося типа. Быстро нашлись материалы товарищей, уже построивших АС на основе этих динамиков. Приглянулся вариант с «тэкувэтэ» (tqwt) труба Войта – материал прикладываю, авторство не установлено см. ссылка).
Понравился этот вариант, в том числе, из-за «открытого корпуса», к которому уже возникли некоторые симпатии. Почему: отсутствие демпфирования динамика или минимальное по необходимости. Другими словами динамической головке не создается препятствий при работе, а это, как я понимаю, означает минимум условий для создания внешнего сопротивления и, как следствие, искажений.
Еще, резонансная частота динамика в корпусе с трубой не изменяется. Это, в свою очередь, должно обеспечить воспроизведение более богатой басовой составляющей, являющейся основой ритма, обеспечивающей объемность звука и усиливающей психоэмоциональное восприятие музыкальной программы. С внутренним сопротивлением (после прослушивания динамиков), опаской получить слабый результат и, все же, надеждой купил три листа строительной фанеры 12мм для повторения в материале предложенной конструкции.
Технологию изготовления не даю. Раскрой тоже. Учитывая свой опыт работ с деревом – считаю, что у каждого мастера, берущегося за изготовление такой конструкции, будет своя специфика конструирования и работ по изготовлению. Специфика связана с условиями, навыками и набором инструмента. Я привык работать с клеем, отказавшись от металлического крепежа (кроме съемной задней стенки).
Это обеспечивает отсутствие технологических реек, забирающих объем, дающих дополнительную геометрию в канале звука, что с моей точки зрения – дипломированного гидравлика – не есть хорошо для движения звуковой волны по каналу. А задача, между прочим, стоит в создании условий для ее плавного, ламинарного (есть такой термин, означающий отсутствие завихрений) движения по каналу. Это снижает вероятность возникновения призвуков, ненужных для высококлассного звука.
Звук построенной АС удивил сразу. Могучий, яркий, красивый и отличный от моих фирменных трехполосных фазонверторных (ФИ) колонок английского бренда. Значительно отличный. С ударением на слово «отличный». Удивление усиливалось тем, что там же – Англия, интеллект инженеров и масштабное производство, а здесь 35-летнее чудо в фанерном ящике.
Посомневавшись в способности этого динамика играть басы в широкополосной АС, построил сужающийся лабиринт – трансмиссионную волновую линию (ТВЛ). По отзывам в сети – это как раз то, что необходимо. Описываю без подробностей и аргументов в пользу такого решения. Не привожу рекомендаций и зависимостей построения ТВЛ.
Многие авторы в сети упоминают о важности правильно сделанных расчётов трансмиссионно-волнового канала, отсутствия фундаментальных ошибок, сложности конструкции и необходимости точного ее повторения при изготовлении. При этом, кроме геометрии и правил выбора динамиков в их подходе собственно ничего и нет.
Снова взял строительную фанеру. На сей раз, два листа, с учетом остатков от предыдущего варианта. Изготовил быстро и точно. Следует подчеркнуть избыточную жесткость корпусов таких конструкций, даже при использовании фанеры 12мм.
Итак, ощущение от прослушивания – очень хорошо. Недостатки те же. Если нехватка верхов – это конструкция динамика, то нехватка басов – вопрос корпуса. Следует сказать, что бас стал более выразительным и подчеркнутым. Это было отмечено независимо всеми участниками прослушивания. Неожиданность состояла в следующем.
Вначале прослушивание велось каждой колонки в отдельности. Хотелось услышать ее возможности, сравнить с другим вариантом. Тем более, первый эксперимент повторения конструкции дал только одну колонку. Потом их подключили вместе. Эффект оказался потрясающим. Возникла не только панорама звука, сцена. Прежде всего, преобразился сам звук.
Его мощь, открытость, легкость ошеломили! Да, позднее, прослушивая неравноценную пару АС, пришлось поднять ВЧ и НЧ на усилителе. Но звук был не просто красивым. Он держал, притягивал к себе. Любимые треки звучали так, как будто слушал их впервые. На многих стали слышны оттенки басов и средних частот, о существовании которых раньше с английскими напольниками даже не подозревал.
Читать далее: Плёнка на авто: выбор покрытия и как обклеить своими руками
Подруга супруги, присутствующая с ней в доме в соседней комнате во время тестирования пары АС на различной громкости и стилях: камерная музыка, джаз, электроника, уходя, сказала, что побывала в филармонии или на концерте. Эта фраза была не деликатность по отношению к хозяевам, а похожа на правду. Распространение звука по сопредельным комнатам оказалось приятным сюрпризом.
Это будет важным моментом при приеме гостей для создания легкого ненавязчивого музыкального сопровождения в нескольких зонах сразу. Аппаратуру стал включать при каждом проходе мимо. И, в конце концов, после трех дней, сдался окончательно и попросил будущего владельца забрать этот тестовый вариант акустики себе домой для прослушивания, пока не наступит время изготовления АС парадного вида.
Вывод был таким: если бы состоялся выбор АС в магазине – звук полученных АС (не фанерный вид конечно) меня бы устроил полностью. О полученном звуке сказано скромно. Звук грандиозный. Когда звучит пара колонок, высоких частот становится практически достаточно. Это не песок, динамик его не может воспроизвести.
Но то, что он воспроизводит – уже удовлетворяло нашим требованиям. Полученное звучание потрясало, переворачивало что-то внутри, возникали комки в горле. Без преувеличений. Оставалась только одна «заноза» – НЧ на усилителе было выкручено на максимум. Тем не менее, звук понравился и хозяину АС. Позднее даже было решено окончательный вариант изготовить на основе ТВЛ: габариты и звучание баса взяли верх.