В процессе хозяйственной деятельности человек применяет понижающие или повышающие трансформаторы. Они обеспечивают оборудование электроэнергией с заданными показателями. Встречаются в продаже модели, обладающие на входе и выходе одинаковым напряжением. Трансформатор 220/220В имеет в своем составе две одинаковые обмотки. Они не соприкасаются между собой. Это обеспечивает повышенный уровень защиты электроники, работающего с ней персонала.
- Устройство
- Для чего нужен изолирующий трансформатор
- Применение
- Упаковка и транспортировка
- Подключение
- Устройство и принцип работы
- Работа ТТ поэтапно на примере схемы
- Правила безопасности
- Понятие трансформатор тока, назначение
- Где используются
- Особенности эксплуатации
- Условия эксплуатации
- Ответы на вопросы о трансформаторах.
- — На каком принципе основывается работа трансформатора?
- — Что такое анцапфа?
- — Почему сердечник трансформатора изготавливают из нескольких изолированных пластин, а не из цельного куска стали?
- — Зачем пластины сердечника трансформатора стягиваются шпильками?
- — Что такое холостой ход трансформатора? Как трансформатор работает в этом режиме?
- — Что происходит на вторичных обмотках трансформатора в случае понижения напряжения на первичной обмотке трансформатора?
- — Мы имеем в собственности шесть смежных земельных участков без электричества, однако, рядом проходит ЛЭП на 380В. Для целей электропитания будущих строений, мы собираемся приобрести понижающий трансформатор. Пожалуйста, подскажите какой выбрать?
- — От чего зависит межповерочный интервал трансформаторов тока?
- — Что означают обозначения обмоток защиты 5Р и 10Р на трансформаторе?
- — Трансформатор тока и трансформатор оперативного тока – в чем разница?
- — Чем отличаются трансформаторы с изолированной нейтралью и глухо заземленной нейтралью?
- Преимущества применения ЦТН:
- Принцип действия и конструктивные особенности ЦТН
- Заземляемые ТН
Устройство
Трансформатор промышленный или бытовой 220 на 220 вольт называется распределительным устройством. Его применяют для дома, квартиры. Конструкция имеет две обмотки. Вторичная катушка не имеет заземления. Этот принцип позволяет избежать поражения током при касании обмотки, проводов, идущих от агрегата.
Устройство позволяет минимизировать риск удара током пользователя. Полностью его вероятность не исключается. Если человек одновременно дотронется до подключенной вторичной обмотки и металлического предмета (заземления), произойдет замыкание.
Катушки аппарата имеют дополнительную изоляцию. Они не соприкасаются друг с другом. Это позволяет вторичной катушке работать автономно.
Для чего нужен изолирующий трансформатор
Во-первых, полярность электрической системы устанавливается со стороны вторичной обмотки. Это значит, что полярность на катере не зависит от берегового подключения, и перепутанная на берегу никак не повлияет на полярность на катере.
Следующее преимущество — безопасность. Без трансформатора, замыкание на корпус или неправильно организованная система заземления на катере ведут к тому, что у всего заземленного оборудования одновременно повышается электрический потенциал (напряжение). Если устройства подключены к общей заземляющей шине, то рост напряжения на корпусах не будет проблемой для тех, кто находится на борту — разницы потенциалов между металлическими частями катера не будет.
Случай короткого замыкания на корпус и разрыва заземления от вторичной обмотки трансформатора. Несмотря на то, что электрический потенциал подводных частей вырастет, пути для тока на берег нет. Ток потечет к своему источнику — вторичной обмотке трансформатора катера.
Однако для тока появляется путь к береговому источнику через подводные элементы судна, электрический потенциал которых вырос, и через воду к штырю заземления на берегу. Поэтому для всех находящихся в воде рядом с катером возникает опасность поражения током.
Изолирующий трансформатор ликвидирует для тока путь через воду к береговой электросистеме. Новым источником напряжения становится вторичная обмотка трансформатора на катере и ток, вызванный повреждением изоляции или коротким замыканием, вернется к ней, а не на берег.
Используются два типа развязывающих трансформаторов. В первом случае электрически изолированный металлический экран устанавливается между первичной и вторичной обмотками. Экран выдерживает приложенное между ним и остальными частями напряжение до 4000 Вольт в течении одной минуты. У трансформаторов второго типа экран не обязательно соответствует таким жестким требованиям по напряжению и току.
Кроме разницы между самими устройствами, существует отличие в подключении провода заземления береговой сети. В разделительных трансформаторах первого типа есть разрыв заземления между береговой и лодочной электрическими системами. В поляризационной системе провод заземления от береговой сети соединяется с корпусом трансформатора. Поэтому термин изоляционный, означает также изоляцию берегового заземления от заземления катера.
Применение
Разделительный бытовой трансформатор 220/220 В применяется не только для дополнительной защиты от короткого замыкания. Он способен компенсировать скачки напряжения сети, часто встречающиеся в городах, небольших поселках. Агрегат, развязывающий систему, выравнивает входящее напряжение. Это обеспечивает длительную эксплуатацию всех бытовых приборов в доме.
Разделительный трансформатор 220/220В рекомендуется устанавливать для помещений с повышенной влажностью, где присутствуют металлические элементы в интерьере. Здесь велика вероятность короткого замыкания.
Следует устанавливать преобразователь в помещении, где есть точка запитки электроинструмента, машин и прочего оборудования. Особенно это важно для приборов, осуществляющих операции сверления и резания. При случайном повреждении элементов токопроводящей системы наличие дополнительной защиты позволит избежать опасной ситуации.
Упаковка и транспортировка
Трансформаторы отгружаются без упаковки, при этом выводы ВН и НН защищаются от повреждений при транспортировке. По требованию заказчика изделия могут упаковываться в транспортную тару – ящики. Способ упаковки согласовывается с заказчиком
Трансформатор перевозится в частично разобранном виде (без радиаторов и расширителя), высушенными и заполненными трансформаторным маслом. Дополнительно осуществляется поставка масла для доливки в трансформаторы.
Не допускается транспортирование трансформаторов, не раскрепленных относительно транспортных средств. При перевозке изделия не допускается резких торможений и разгонов, излишних вибраций и толчков.
Подключение
Подключить аппарат своими руками получится даже у начинающего электрика. Монтаж оборудования предполагает подключать электрические приборы без соединения с заземляющим контуром. Этого не потребуется благодаря возникновению во вторичном заземляющем контуре собственной электрической цепи. Она должна быть изолирована от сети.
Разность потенциалов будет образовываться только между клеммами прибора. Электричество будет протекать по контуру только при подключении к ним. Приведенная схема позволяет при пробое изоляции на корпусе подключенного оборудования избежать травмирования человека.
Чтобы избежать появления потенциала на корпусе различных бытовых приборов, требуется дополнительно включать в схему УЗО. Этот элемент системы позволяет предотвратить поражение электричеством, если человек одновременно коснется металлического (или заземленного) предмета, корпуса с повышенным потенциалом.
Когда правила подключения не выполняются, в аварийной ситуации через тело человека может пройти ток. Даже его величины в 0,1 А, соответствующая лампочке обыкновенного фонарика, способно приводит к остановке сердца. По этой причине требуется обязательно устанавливать УЗО.
Устройство и принцип работы
В основе работы — электромагнитная индукция. Аппарат разделяет высоковольтные токонесущие части и трансформирует величины энергии до безопасных или требуемых.
Суть работы ТТ. Если через первичку идет переменный определенной силы ток, то вторичная катушка, будучи с постоянной активной нагрузкой, например (резистор или обслуживаемая ЭУ), создает на них падение напряжения пропорционально току первички (зависимо от коэффициента трансформации) и сопротивлению. Напряжение уменьшается в максимально возможном диапазоне, возможности понижения почти бесконечные.
Устройство, схема трансформатора тока:
- две (реже больше) обмотки на магнитопроводе из электростали:
- первичная (включаемая в сеть). Это любая токопроводящая жила;
- вторичная (от нее энергия подается к приемнику). Одиночная или групповая снабжается несколькими выводами для защитных цепей, приборов измерения и контроля;
- выводы, клеммы.
Первичные витки подсоединяются последовательным методом, поэтому там полная нагрузка, вторичная же замыкается на нее (реле защиты, счетчики), пропуская ток пропорциональный величине на первой. Сопротивление измерителей малое и считается, что все трансформаторы тока функционируют в состоянии КЗ.
Есть несколько вариантов вторичных обмоток, обычно они создаются для подсоединения защитных приспособлений и для приборов контрольных, учетных. К катушкам обязательно должна подключаться нагрузка со строго регламентированным сопротивлением — даже ничтожные отклонения приводит к критическим погрешностям замеров, не селективности РЗ.
Работа ТТ поэтапно на примере схемы
Трансформатор тока как устроен, принцип работы поэтапно:
- Через первичную цепь (кол. витков W1) идет ток I1, преодолевается ее полное сопротивление Z1.
- Вокруг катушки образуется магнитное направленное поле Ф1, улавливаемое стержнем стоящим перпендикулярно к вектору (I1) данной величины. Ориентация деталей делает потери энергии почти нулевыми.
- Пересекающий перпендикулярные по отношению к нему витки W2 поток Ф1 создает там движущую силу Е2.
- Из-за последней во вторичной катушке (Z2) появляется ток I2, преодолевающий сопротивление (ее и подсоединенной нагрузки Zн).
- На клеммах витков вторичной катушки возникает понижение напряжения U2. Одно магнитное поле Ф2 от вторичных витков I2 понижает другое Ф1 в стержне. Возникший в нем трансформаторный поток Фт определяют суммой векторов (Ф1 и 2).
Принцип работы, отличия трансформатора напряжения основываются на электромагнитных явлениях, как и в токовых. Но разница в количестве витков обмоток и назначении. Важно учесть цели, на которые конструкция рассчитана, трансформаторы напряжения обслуживают потребителей, поэтому «заточены» на трансформацию питания для электроприборов, ТТ — для защитных и измерительных устройств, а также они используются при осуществлении контроля и работают в режиме КЗ.
Правила безопасности
Применение разделительного агрегата позволяет предотвратить несчастные случаи. При невыполнении правил безопасности, вероятность аварии есть. Чтобы избежать поражения электрическим током при возникновении непредвиденной ситуации, необходимо придерживаться определенных правил:
- Запрещается дотрагиваться к двум клеммам аппарата на выходе одновременно.
- Первичная обмотка должна иметь защиту (УЗО). Она работает в составе однофазной цепи.
- Нельзя заземлять корпус инструмента, машин и прочих агрегатов, если они подключаются к разделительному агрегату.
- К защитному устройству допускается подключить только один прибор. Если требуется включить в сеть несколько потребителей, придется использовать дополнительное оборудование для контроля изоляции. Техника будет сигнализировать при возникновении нарушений в изоляционных слоях.
Придерживаясь подобных рекомендаций, минимизируются риски при работе с электрикой.
Понятие трансформатор тока, назначение
Под трансформаторами тока (ТТ) подразумевают аппараты статичного типа с электромагнитным принципом с обмотками (две или больше) на металлическом стержне (магнитопроводе) с выводами для подключения в сеть и к измерительным приборам.
Для чего применяют ТТ:
- подсоединения измерителей, РЗиА (защитных реле), которые не выдержали бы первоначальной нагрузки. Происходит изолирование подключаемого и работающего узла от чрезмерных мощностей обслуживаемого оснащения;
- расширение пределов измерений;
- понижения тока по мощности и создание защиты;
- контроль в цепях с высокими величинами, например, в сварочном аппарате, где ток достигает 150–250 А;
- в любых других случаях, когда надо понизить ток.
ТТ работают с переменными, в крайнем случае с пульсирующими напряжением — если подключить к постоянному, то на выходе потенциал будет нулевым. Иногда встречается название «трансформатор постоянного тока», это значит, что в нем используются специальные выпрямители.
Где используются
ТТ широко применяются при транспортировке электроэнергии на большие расстояния, для распределения между приемниками. Они отличаются тем, что предназначены для выпрямительных, стабилизирующих, сигнальных, усиливающих, контрольных узлов, на станциях и объектах, производящих электричество. Именно поэтому к их точности и подключению требования чрезвычайно высокие — даже ничтожные отклонения значимые.
Где чаще всего и зачем применяют:
- в промышленной, производственной энергетике, в релейных узлах подстанций, распределительных конструкциях, мощных электроустановках;
- для замеров и в приборах, осуществляющих данную функцию. Ставят в узлы учета (коммерческого, бытового);
- для контроля высоких величин, при подсоединении учетных устройств, электросчетчиков.
Особенности эксплуатации
При работе бытового защитного устройства разделительного типа будет теряться часть энергии. Для разных моделей характерно наличие КПД на уровне 70-85%. Экономить на оплате электроэнергии не получится. Этой особенностью пренебрегают. Безопасность, здоровье пользователей являются важнейшим фактором при принятии решения об установке защитной аппаратуры.
Рекомендуется устанавливать аппаратуру внутри подвальных помещений или кабельных колодцев. Разделительные конструкции обязательно применяют во влажных помещениях, при работе с инструментом I класса безопасности.
Существуют универсальные и специализированные модели. Например, медицинские учреждения устанавливают особые разновидности конструкций. Они обеспечивают стабильную, безопасную работу электрических аппаратов стационарных отделений, операционной.
Чтобы аппаратура работала долго и надежно, ее необходимо устанавливать в герметичном, сухом месте. Внутрь не должна просачиваться пыль и загрязнения. Поэтому перед подключением рекомендуется смонтировать под него ящик. Его вешают на стену или крепят к полу.
Применение трансформатора позволит минимизировать риски удара током. Наличие защитного устройства сети позволит продлить срок эксплуатации электроприборов. Зачастую применение подобных агрегатов крайне необходимо.
Условия эксплуатации
Эксплуатация трансформатора осуществляется согласно руководству по эксплуатации завода-изготовителя, действующим «Правилам технической эксплуатации», «Правилам устройства электроустановок».
Климатическое исполнение и категория размещения трансформаторов У1 или УХЛ1 — по ГОСТ 15150, при этом:
— окружающая среда не взрывоопасная, не содержащая токопроводящей пыли;
— высота установки над уровнем моря не более 1000 м;
— режим работы длительный;
— трансформаторы в стандартном исполнении не предназначены для работы в условиях химически активных сред.
Ответы на вопросы о трансформаторах.
За время работы нашей компании, а это, на минуточку, более 15 лет, нами был накоплен ценный опыт, который помогает в решении повседневных сложных задач наших заказчиков, и которым мы бы хотели поделиться с пользователями нашего сайта. Благодаря рубрике «Вопрос-ответ» мы производим обратную связь с нашими клиентами, и некоторые вопросы нам показались интересными. Одни вопросы задают очень часто, другие – не очень, однако, в любом случае, мы приняли решение осветить в данной статье те моменты, которые, безусловно, являются очень важными в процессе повседневной эксплуатации трансформаторов.
Итак, начнем с вопросов, которые являются ключевыми. На эти вопросы мы отвечали не раз, однако, они по-прежнему волнуют многих наших посетителей:
— На каком принципе основывается работа трансформатора?
Ответ: В основе принципа действия любого трансформатора лежит явление электромагнитной индукции. Т.е. явлении, связанном с возникновением электрического тока в замкнутом контуре трансформатора.
— Что такое анцапфа?
Ответ: Анцапфа – это, так называемый, переключатель ПБВ (сокр., переключение без возбуждения). В силовом трансформаторе такой переключатель устанавливается со стороны высшего напряжения (ВН) и предназначается, в первую очередь, для изменения коэффициента трансформации. При изменениях высшего напряжения в пределах +- 10% от номинального значения, анцапфа позволяет поддерживать напряжение на вторичной обмотке постоянным. Переключение положения ПБВ (анцапфы) необходимо производить только при отключенном трансформаторе (снимая напряжение на стороне ВН).
— Почему сердечник трансформатора изготавливают из нескольких изолированных пластин, а не из цельного куска стали?
Ответ: Сердечник трансформатора изготавливается с использованием изолированных пластин для уменьшения или практически полного исключения потерь, вызываемых протеканием вихревых токов. Таким образом, благодаря сердечнику из изолированных пластин, общая сумма потерь, будет в разы ниже, чем потери при использовании цельного сердечника. Стоит отметить, что сердечник может быть изготовлен цельным, однако, обязательным условием является высокое удельное сопротивление материала (это могут быть, например, ферритовые сплавы).
— Зачем пластины сердечника трансформатора стягиваются шпильками?
Ответ: Сделано это для того, чтобы обеспечить максимально плотное прилегание изолированных пластин друг к другу, а также, чтобы сделать пакет пластин сердечника прочным и достаточно устойчивым к механическим повреждениям.
— Что такое холостой ход трансформатора? Как трансформатор работает в этом режиме?
Ответ: Режим холостого хода трансформатора — это такой режим работы трансформатора, при котором одна из его обмоток запитана от источника переменного тока (напряжения) (линия электропередач), а цепи остальных обмоток разомкнуты. В реальности, такой режим работы встречается у трансформатора, в случае, когда он подключен к сети, а нагрузка, запитываемая от его вторичной обмотки, ещё не подключена.
За время ведения рубрики «Вопрос-ответ» нам не раз приходилось вникать в тонкости частных проблем, возникающих у пользователей. Часто, вопросы задают студенты, или просто люди сомневающиеся, как, например, в следующих вопросах:
— Что происходит на вторичных обмотках трансформатора в случае понижения напряжения на первичной обмотке трансформатора?
Ответ: Напряжение на вторичных обмотках трансформатора снижается строго пропорционально коэффициенту трансформации.
— Мы имеем в собственности шесть смежных земельных участков без электричества, однако, рядом проходит ЛЭП на 380В. Для целей электропитания будущих строений, мы собираемся приобрести понижающий трансформатор. Пожалуйста, подскажите какой выбрать?
Ответ: Для начала, необходимо определить планируемую суммарную мощность потребления. Здесь, следует учесть возможность увеличения количества потребителей (и соответственно увеличения потребления). Затем присылайте заявку нам, а мы, по Вашим данным, подберем подходящий вариант понижающего трансформатора.
Нам также задают вопросы, которые косвенно касаются выбора трансформатора. Можно назвать их «вопросы от любознательных». И хотя информацию по таким вопросам, часто, можно найти в открытом доступе, мы охотно идем навстречу:
— От чего зависит межповерочный интервал трансформаторов тока?
Ответ: Сроки межповерочных интервалов трансформаторов устанавливаются, непосредственно, заводом-изготовителем, исходя из характеристик данной конкретной модели трансформатора. Как правило, межповерочный интервал трансформатора составляет 4 года.
— Что означают обозначения обмоток защиты 5Р и 10Р на трансформаторе?
Ответ: Обозначения 5Р и 10Р применяются для отображения погрешности релейной защиты в 5% и 10% соответственно.
— Трансформатор тока и трансформатор оперативного тока – в чем разница?
Ответ: Главное отличие состоит в назначении этих трансформаторов. Трансформаторы тока предназначаются для преобразования тока до таких значений, которые были бы удобны для измерения, а, следовательно, используются для подключения различного измерительного оборудования. Трансформатор оперативного тока предназначается для питания различных цепей управления оборудованием (реле, приводы, и т.п.), автоматики, а также сигнализации и защиты.
— Чем отличаются трансформаторы с изолированной нейтралью и глухо заземленной нейтралью?
Ответ: В цепях трансформаторов с глухозаземленной нейтралью, вторичную обмотку соединяют по схеме «звезда с нулевым выводом», и поэтому такой трансформатор имеет 4 вывода. Один из выводов – нулевой. При этом, он соединен с контуром заземления. В цепях трансформаторов с изолированной нейтралью, используют схему соединения вторичной обмотки — «звезда», выводов при этом получается 3. Трансформаторы с глухозаземленной нейтралью, при обрыве одной из фаз – безопаснее, а с изолированной – не прекращают подачу электроэнергии.
Преимущества применения ЦТН:
- Соответствуют инновационной концепции развития электроэнергетики по направлению «Цифровая подстанция»;
- Совместимы как с традиционными, так и с передовыми МП приборами учета электроэнергии и РЗ;
- Имеется возможность формирования выходного сигнала в формате IEC 61850-9-2;
- Точно воспроизводят формы кривых напряжений в нормальных и переходных режимах;
- Не вступают в феррорезонанс;
- Имеется возможность использования оптических кабелей связи;
- Взрыво и пожаробезопасны;
- Имеют малые габариты;
Принцип действия и конструктивные особенности ЦТН
Принцип действия трансформаторов состоит в следующем: Измерение напряжения переменного и постоянного тока осуществляется с применением делителей напряжения. В зависимости от уровня измеряемого напряжения обработка результатов преобразований осуществляется на первичной стороне (высокого напряжения) для исполнений преобразователей 35 кВ и выше, либо на вторичной стороне (низкого напряжения) для исполнений преобразователей 35 кВ и ниже.
Электронный блок на первичной стороне преобразует выходные сигналы соответствующих первичных преобразователей в цифровой сигнал, далее выполняет формирование пакетов данных и передачу их по оптическим кабелям электронным блокам на вторичной стороне. Электронный блок на вторичной стороне обрабатывает полученные пакеты данных и отправляет их по оптическому кабелю устройствам релейной защиты, автоматики, коммерческого учета электроэнергии и другим устройствам подстанции.
Трансформаторы конструктивно состоят из следующих компонентов:
- первичные преобразователи напряжения переменного и постоянного тока;
- электронный блок на стороне высокого напряжения (для исполнений от 35 кВ и выше);
- электронный блок на стороне низкого напряжения.
Первичные преобразователи напряжения переменного и постоянного тока представляют собой делитель напряжения, содержащий высоковольтное и низковольтное плечи. Первичный преобразователь напряжения переменного и постоянного тока обеспечивает преобразование высокого напряжения переменного и постоянного тока в низкое напряжение переменного и постоянного тока для дальнейшего преобразования его в цифровую форму электронным блоком.
Электронные блоки выполняют преобразование выходных сигналов первичных преобразователей силы и напряжения переменного и постоянного тока в цифровой сигнал, его обработку и передачу измеренных значений напряжения переменного и постоянного тока устройствам релейной защиты, автоматики, коммерческого учета электроэнергии и другим устройствам на подстанции в соответствии с протоколом IEC 61850-9-2 (протокол передачи может быть изменен либо дополнен другим протоколом по требованию заказчика). На выходе трансформаторы формируют несколько потоков измерений мгновенных значений силы тока и напряжения со следующими частотами дискретизации:
1) 4000 Гц (80 отчетов на период промышленной частоты 50 Гц) – для устройств релейной защиты и автоматики;
2) 12800 Гц (256 отчетов на период промышленной частоты 50 Гц) – для устройств коммерческого учета электроэнергии.
Трансформаторы также могут формировать потоки измеренных мгновенных значений со следующими частотами дискретизации (опция):
1) 4800 Гц (96 отчетов на период промышленной частоты 50 Гц и 80 отчетов на период промышленной частоты 60 Гц);
2) 15360 Гц (256 отчетов на период промышленной частоты 60 Гц);
3) 14400 Гц (288 отчетов на период промышленной частоты 50 Гц и 240 отчетов на период промышленной частоты 60 Гц);
4) 96000 Гц – для целей учета электроэнергии и РЗА в сетях постоянного тока.
Частота дискретизации может быть изменена по требованию заказчика, но не должна превышать 96 000 Гц.
Опционально ЦТН может выдавать дополнительную служебную информацию о параметрах измеряемых электрических сигналов и передаваемой электрической энергии, а также служебную информацию отражающую состояние цифрового трансформатора.
Синхронизация электронных блоков с системой точного времени осуществляется по внешнему стробирующему сигналу 1PPS или данным синхронизации по протоколу PTP. Выбор типа синхронизации производится по требованию заказчика.
ЦТН может выпускаться в резервированном исполнении. Делитель напряжения может исполняться в резервированном исполнении, при этом в изоляционной колонне устанавливаются два и более высоковольтных делителя. Передача информации от ЦТН также может резервироваться по протоколам PRP и HSR.
Заземляемые ТН
Заземляемые трансформаторы напряжения применяются в сетях с изолированной нейтралью. Заземление нейтрали ТН позволяет осуществлять контроль изоляции сети с помощью дополнительных вторичных обмоток, соединенных по схеме звезда/треугольник. На наш взгляд, это основная функция заземляемых трансформаторов, функция измерения и учета — дополнительная. Зачастую, в электрических сетях эксплуатируются заземляемые трансформаторы напряжения, у которых защитные обмотки не используются. Применение заземляемых трансформаторов без использования функции контроля изоляции сети — неоправданный риск.
Это связано с тем, что:
- заземляемые трансформаторы напряжения подвержены влиянию феррорезонансных явлений;
- изоляцию обмотки ВН невозможно испытать в условиях эксплуатации приложенным одноминутным напряжением промышленной частоты.