Тороидальный трансформатор – устройство и преимущества для электроники

Конструкция

Первый двухполярный трансформатор был изготовлен еще Фарадеем, и согласно данным, это было именно тороидальное устройство. Тороидальный автотрансформатор (марка Штиль, ТМ2, ТТС4)– это прибор, предназначенный для преобразования переменного тока одного напряжения в другое. Они используется в различных линейных установках. Этот электромагнитный прибор может быть однофазным и трехфазным. Конструктивно состоит из:

princip-raboty-transformatora-2
Фото — принцип работы трансформатора

Устройство этого типа используется в различных аудио- и видеоустановках, стабилизаторах, системах освещения. Главным отличием этой конструкции от других устройств является количество обмоток и форма сердечника. Физиками считается, что кольцевая форма – это идеальное исполнения якоря. В таком случае, намотка тороидального преобразователя выполняется равномерно, как и распределение тепла. Благодаря такому расположению катушек, преобразователь быстро охлаждается и даже при интенсивной работе не нуждается в использовании кулеров.

gotovyj-tpn25
Фото — готовый ТПН25

Видео: назначение тороидальных трансформаторов

Принцип работы

Самый просто тороидальный трансформатор состоит из двух обмоток на кольце и сердечнике из стали. Первичная обмотка подключается к источнику электрического тока, а вторичная – к потребителю электроэнергии. За счет магнитопровода осуществляется соединение отдельных обмоток между собой и усиления их индуктивной связи. При включении питания в первичной обмотке создается переменный магнитный поток. Сцепляясь с отдельными обмотками, этот поток создает в них электромагнитную силу, которая зависит от количества витков намотки. Если изменять число обмоток, то можно сделать трансформатор для преобразования любого напряжения.

princip-dejstviya
Фото — Принцип действия

Также преобразователи такого типа бывают понижающими и повышающими. Тороидальный понижающий трансформатор имеет высокое напряжение на выводах вторичной обмотки и низкое на первичной. Повышающий наоборот. Помимо этого, обмотки могут быть высшего напряжения или низшего, в зависимости от характеристик сети.

Как сделать

Изготовление тороидального трансформатора под силу даже молодым электрикам. Намотка и расчет не представляют собой ничего сложного. Предлагаем рассмотреть, как правильно мотать тороидальный магнитопровод для полуавтомата:

  1. Для намотки трансформатора на ферритовом сердечнике может использоваться специальный станок. Он поможет значительно ускорить работу и уменьшить вероятность соскока железа. Его можно произвести по типу зажима для накрутки проводов;
  2. Нужно отметить, что латры, которые нужны для намотки, должны быть одинаковых размеров. При наматывании следите за тем, чтобы между листами не было щелей. Если же Ваш силовой трансформатор имеет небольшие щели в магнитопроводе, то их можно заполнить железными листами от любого другого трансформатора, обрезанными до определенного размера;

    raschet2
    Фото — расчет

  3. После окончания наматывания железа, его выводы прихватываются при помощи сварки. Это помешает обмотке размотаться. Достаточно буквально двух – трех сварных точек;
  4. После этого торцы магнитопровода промазываются эпоксидным клеем. Предварительно кромки немного закругляются;
  5. Поверх боковой стороны усилителя наматывается изоляция – это может быть даже лист картона. Его можно присоединить при помощи малярного скотча. Действие повторяем по всем поверхностям магнитопровода;
  6. Теперь нужно вокруг картонной изоляции намотать изоленту из текстиля. Она продается в специальных электротехнических магазинах. Поверх этого слоя изоляции можно намотать дополнительный из малярного скотча;
  7. Теперь на кольцо накручивается провод выбранного сечения, рассчитать размеры проводов и потребные характеристики поможет специальная программа. После окончания накрутки все покрывается лаком NC, один вывод обмотки должен остаться свободным;

    namotka-obmotki
    Фото — намотка обмотки

  8. После нужно изготовить изоляцию из лакоткани или текстильной изоленты, поверх которой наматывается вторая обмотка. Она также покрывается лаком. Остается только накрутить последнюю изоляцию и защитить. Действия продолжать до получения нужного количества обмоток;

    obmotka-lentoj
    Фото — обмотка лентой

  9. Вторичная обмотка наматывается уже из большего по сечению провода. Если сетевой трансформатор нужен для дуговой сварки, то необходимо добавлять в конце еще определенное количество витков, помимо расчетных обмоточных.

Обзор цен

Купить тороидальный трансформатор HBL-200 можно в любом городе Российской Федерации и стран СНГ. Он используется для различной аудиоаппаратуры. Рассмотрим, сколько стоит преобразователь.

1033747
Трансформатор переводится с латинского как «превращатель», «преобразователь». Это электромагнитное устройство статического типа, предназначенное для преобразования переменного напряжения или электрического тока. Основу любого трансформатора составляет замкнутый магнитопровод, который иногда называют сердечником. На сердечник наматываются обмотки, которых может быть 2−3 и более в зависимости от вида трансформатора. Когда на первичной обмотке возникает переменное напряжение, внутри сердечника возбуждается магнитный ток. Он, в свою очередь, вызывает на остальных обмотках токовое переменное напряжение с точно такой же частотой.

Обмотки различаются между собой количеством витков, что определяет коэффициент изменения величины напряжения. Иными словами, если вторичная обмотка имеет в своём составе в два раза меньше витков, то на ней возникает переменное напряжение по величине в два раза меньшее, чем на обмотке первичной. Но мощность тока при этом не меняется. Это делает возможным работу с токами большой силы при относительно небольшом напряжении.

Как устроен трансформатор?

ris-1-11-600x394
Основа прибора – замкнутый магнитопровод. На него наматываются обмотки – от двух и более. При появлении на первичной обмотке переменного напряжения, в основе возбуждается магнитный поток. Он наводит на остальных обмотках переменное напряжение с аналогичной частотой.
Разница в количестве витков между обмотками определяет коэффициент изменения величины напряжения. Проще говоря, если вторичная обмотка имеет вдвое меньше витков, на ней возникнет напряжение, в два раза меньшее, чем в первичной. Мощность остается прежней, что позволяет работать с большими токами при меньшем напряжении.

Конструктивное исполнение различается по форме магнитопровода.

ris-2-11-600x338

Броневой

Образует два витка магнитного поля, рассчитан на большие нагрузки. Магнитопровод разъемный, удобен в сборке – на центральный стержень надевается готовая обмотка. Недостаток – тяжелый, габаритный. Крайние и поперечные стержни магнитопровода эффективно не используются.

Стержневой

Конструкция аналогична броневому, магнитное поле одновитковое, соответственно мощность меньше. Также имеет разборную конструкцию. Эффективность использования поверхности магнитопровода не выше 40%.

Тороидальный трансформатор

Имеет самый высокий КПД. Это достигается за счет 100% использования площади магнитопровода. Поэтому, при одинаковой мощности, такие трансформаторы имеют меньшие размеры. Еще одно преимущество – за счет распределения обмоток по всей площади основы, охлаждение витков более эффективное. Это позволяет еще больше нагрузить преобразователь без превышения критической температуры. Недостаток один – такие трансформаторы сложно собирать, поскольку основа неразъемная.

Материалы для магнитопровода:

Железные основы набираются из пластин, наматываются ленточным способом, или отливаются монолитно. Наиболее эффективный материал – феррит. Чаще всего применяется именно в торах, увеличивая их КПД.

Какие бывают трансформаторы по конструкции, мы рассмотрели. При покупке готового прибора, вас мало волнует, насколько сложно его сделать.

ris-3-11-600x534
Тороидальная конструкция удобна в монтаже (занимает мало места, крепится одним винтом). Однако стоит такой прибор выше, чем стержневые или броневые преобразователи напряжения. Часто его цена перекрывает экономию от самостоятельного изготовления всей электроустановки.

Виды трансформаторов

В зависимости от формы магнитопроводаразличают три вида трансформаторов:

  • Броневой. Имеет квадратную форму с двумя боковыми, одним центральным и двумя поперечными стержнями. При этом эффективно используется только центральный стержень. Именно на него надевается обмотка. Поэтому КПД данного устройства не очень высокое. Образует два витка магнитного поля. Данный трансформатор рассчитан на большие нагрузки. Этим объясняется его очень большой вес.
  • Стержневой. В каком-то смысле похож на первый вид. По форме это половинка от броневого магнитопровода. Имеет в своём составе два боковых сердечника и два поперечных. Магнитное поле одновитковое, и, как следствие, мощность у него меньше. КПД у такого трансформатора составляет 40%.
  • Тороидальный. Своё название получил за счёт оригинальной формы. В математике существует такое понятие, как тороидальная поверхность. Если говорить проще — это объёмный круг или форма бублика. Благодаря такой форме магнитопровода тороидальные трансформаторы имеют самый высокий уровень КПД, приближающийся к 100%. Поэтому такие трансформаторы всегда имеют меньшие размеры при одинаковой мощности, по сравнению с другими видами. Ввиду того, что обмотки равномерно распределяются по всей площади сердечника, происходит более эффективное охлаждение витков. Что, в свою очередь, позволяет максимально нагружать такие устройства без возникновения опасности перегрева.

Плюсы и минусы использования тороидального трансформатора в качестве выходного

Если трансформатор тороидального типа собираются использовать для работы с ламповым усилителем, то сначала оценивают целесообразность этого поступка. Обычно сравнивают тс такого типа со стержневыми или броневыми вариантами, которые обладают похожей спецификой действий. В сравнении с ним у трансформаторов тороидальных имеются такие преимущества:

  • нет зазоров и стыков в сердечнике;
  • сталь используется прямым методом, так как направляющие проката и магнитного поля, образуемого элементами, идентичное;
  • использоваться могут варианты стали марок Э-340, Э-370 и другие.

Поток рассеяния катушки, которая использоваться в тс, должен быть равен нулю. Только использование пластинки из стали позволяет достичь этого показателя. В отличии от оборудования стандартного вида в этих типах магнитное поле, вызываемое внешними раздражителями, практически не влияет на работу.

Использование тороидального трансформатора в качестве выходного для лампового усилителя соответственно позволяет уменьшить влияние окружающих помех. Тороидальный сердечник, если сравнивать его с обычным, показывает гораздо большие экономические и электрические показатели. Его использование более целесообразно.

Сталь в составе позволяет устранить нелинейные искажения. Кроме того, так как напряжение не колеблеться, величина индукции максимальная, то вес и объем сердечника уменьшается, следовательно устройство само весит меньше.

Отдельно специалисты отмечают простоту использования и удобство приборов. Экранов нет, что позволяет комфортно закреплять их. Но следует понимать, что есть и недостатки. К числу таких относится стоимость намотки — она выходит несколько выше.

11-7

Материалы пластин

Сердечники для трансформаторов изготавливают либо из металла, либо из феррита. Феррит, или ферромагнетик, — это железо с особым строением кристаллической решётки. Применение феррита увеличивает КПД трансформатора. Поэтому чаще всего сердечник трансформатора изготавливается именно из феррита. Существует несколько способов изготовления сердечника:

  • Из наборных металлических пластин.
  • Из намотанной металлической ленты.
  • В виде отлитого из металла монолита.

Любой трансформатор может работать как в повышающем, так и в понижающем режиме. Поэтому условно все трансформаторы делятся на две большие группы. Повышающие: на выходе напряжение больше, чем на входе. Например, было 12 В, стало 220 В. Понижающие: на выходе напряжение ниже, чем на входе. Было 220, а стало 12 вольта. Но в зависимости от того, на какую обмотку подаётся первичное напряжение, можно понижающий трансформатор превратить в повышающий, который 10 А превратит в 100 А.

Тороидальный трансформатор своими руками

Тороидальный трансформатор, или просто тор, чаще всего изготавливают в домашних условиях в качестве главной детали для домашнего сварочного аппарата и не только. По сути, это самый распространённый вариант трансформатора, впервые изготовленный ещё Фарадеем в 1831 году.

Преимущества и недостатки тора

Тор обладает несомненными достоинствами по сравнению с другими видами:

  • Относительно небольшие размеры.
  • Очень сильный выходной сигнал.
  • Обмотки имеют маленькую длину, и, как следствие, эти устройства характеризуются небольшим сопротивлением и очень высоким КПД.
  • Благодаря своей форме легко устанавливаются и также легко демонтируются в случае необходимости.

Материалы для намотки

В качестве сердечника используют в основном профильные пластины, изготовленные из специального сплава. Их собирают по необходимой толщине, учитывая расчетное сечение сердечника. Существует несколько форм пластин, но чаще всего используются Ш-образные элементы.

Каркас трансформатора – это, в принципе, изолятор, который ограждает сердечник от обмоток. На нем же держится и катушка. Изготавливают каркас и диэлектрического материала, он должен быть тонким (0,5-2,0 мм), чтобы поместиться в окошке сердечника. Если будет перематываться старый трансформатор, то функции каркаса могут выполнять картон, текстолит и так далее. Размеры каркаса и его форма определяются параметрами сердечника. Но высота конструкции должна быть больше размеров обмотки.

Читайте также:  Самый «доступный» усилитель от Mark Levinson – № 5805

Для тороидальных трансформаторов лучше использовать медные провода, покрытые защитной эмалью. Для сварочных аппаратов лучше использовать провода медные или алюминиевые с целлюлозной, хлопчатобумажной и ли стекловолокнистой изоляцией. Последний вид не самый лучший. Он прекрасно справляется с нагрузками, особенно с высокими температурами, но в процессе вибрации волокна расслаиваются, а это нарушение изоляционного слоя. Что касается выводных проводов, то оптимально, если они будут разного цвета. Это упростит способ подключения.

Как видите, перемотать свой собственный старый трансформатор не очень сложно. Это, конечно, займет много времени, но работать прибор будет неплохо. Во всяком случае он будет дешевле, чем покупать новый.

Для преобразования тока используются различные вид специальных устройств. Тороидальный трансформатор ТПП для сварочного аппарата и других приборов, можно намотать своими руками в домашних условиях, он является идеальным преобразователем энергии.

Особенности намотки тора

Первичная обмотка осуществляется медным проводом в стеклотканевой или хлопчатобумажной изоляции. Ни в коем случае нельзя использовать провода в резиновой изоляции. Для силы тока на первичной обмотке в 25 А наматывающийся провод должен иметь сечение 5−7 мм. На вторичной необходимо использовать провод значительно большего сечения — 30−40 мм. Это необходимо ввиду того, что на вторичной обмотке будет протекать ток значительно большей силы — 120−150 А. В обоих случаях изоляция провода должна быть термостойкой.

Для того чтобы правильно перемотать и собрать самодельный трансформатор, необходимо понимать некоторые детали процесса его работы. Нужно грамотно осуществлять намотку проводов. Первичная обмотка производится с помощью провода меньшего сечения, а количество самих витков здесь значительно больше, это приводит к тому, что первичная обмотка испытывает очень большие нагрузки и, как следствие, может очень сильно греться в процессе работы. Поэтому укладка первичной обмотки должна производиться особенно тщательно.

В процессе намотки каждый намотанный слой необходимо изолировать. Для этого используют либо специальную лакоткань, либо строительный скотч. Предварительно изоляционный материал нарезается на полоски шириной 1−2 см. Изоляцию укладывают таким образом, что внутренняя часть обмотки покрывается двойным слоем, а внешняя, соответственно, одним слоем. После этого весь изоляционный слой обмазывается толстым слоем клея ПВА. Клей в этом случае несёт двойную функцию. Он укрепляет изоляцию, превращая её в единый монолит, а также значительно уменьшает звук гудения трансформатора во время работы.

31047

Приспособления для намотки

Намотка тора — сложный процесс, занимающий много времени. Для того чтобы как-то его облегчить, используют специальные приспособления для намотки.

  • Так называемый вилочный челнок. Предварительно на него наматывается необходимое количество провода, и затем посредством челночных движений производят последовательную намотку провода на сердечник трансформатора. Этот способ годится лишь в том случае, если наматываемый провод достаточно тонок и гибок, а внутренний диаметр тора настолько велик, что позволяет свободно протаскивать челнок. При этом намотка происходит достаточно медленно, поэтому если необходимо намотать большое количество витков, то придётся потратить на это очень много времени.
  • Второй способ более продвинутый и требует для своего осуществления специального оборудования. Но зато с его помощью можно намотать трансформатор практически любого размера и с очень большой скоростью. При этом качество намотки будет очень высоким. Приспособление называется «размыкаемый обод». Суть процесса состоит в следующем: намоточный обод аппарата вставляется в отверстие тора. После этого намоточный обод замыкается в единое кольцо. Затем на него наматывается необходимое количество обмоточной проволоки. И в заключение намоточный провод сматывается с обода аппарата на катушку тора. Такой станок можно изготовить в домашних условиях. Его чертежи находятся в свободном доступе в Интернете.

(опубликовано в марте 2009)

В технической литературе в вопросах, касаемых ламповых усилителей мощности, всегда говорится о выходном трансформаторе, как об одном из важнейших компонентов усилителя, приводятся формулы для его расчета. Однако, крайне редко упоминается о методах, приемах, полезных при создании выходного трансформатора. Единственная статья, немного осветившая этот вопрос — [1], впрочем и к ней можно много чего добавить. Полезно указать технологические приемы, позволяющие существенно улучшить звучание трансформатора, а так же устранить влияние на него воздействия внешних магнитных полей или улучшить уже готовые трансформаторы. Логичен вопрос: почему ламповые усилители стоят так дорого, хотя ими не озвучить стадион? Дело здесь не в выходной мощности, а в верности воспроизведения. Приглядитесь на предлагаемый ассортимент: чаще всего это двухтактные схемы, работающие в классе А, либо просто однотактные схемы, которые, как известно, работают исключительно в классе А (в редких случаях А2 с токами сетки). В таком классе оконечный каскад потребляет немалый ток, и его КПД ограничивается в лучшем случае 10-15% от полной потребляемой мощности. Поэтому в подобных усилителях нужен солидный силовой трансформатор. Учитывая мощность, уходящую на накал ламп нетрудно подсчитать, что для стереоусилителя с выходной мощностью 5-10 Вт на канал, работающий в классе А в качестве силового понадобится трансформатор вроде ТС-180. На нем при помощи транзисторного или микросхемного тракта можно собрать и приличный 100-ваттный усилитель, но лампы дают более живой и реалистичный звук по сравнению со своими полупроводниковыми собратьями. Использование обратных связей нежелательно, так как от этот значительно страдает микродинамика воспроизведения. Лучше всего использовать усилители класса А с акустикой чувствительностью не менее 90дБ. Не смотря на скромные параметры КАЧЕСТВЕННО такой аппарат изготовить сложно. Технологических причин высокой цены ламповых усилителей много, все они упираются в качество используемых компонентов. Самый дорогой компонент в таком усилителе, как правило, это выходной трансформатор. Казалось бы — что сложного намотать на каркас пару-тройку обмоток и установить его в железо? Дело в том, что для равномерного усиления по всем звуковым частотам (20-20000 Гц) не только первичная, но и вторичная обмотка должны быть секционированы, что так же вызывает определенные трудности намотки, особенно если она ведется вручную. К тому же при секционировании уменьшается паразитная емкость трансформатора и, как следствие, расширяется его рабочий диапазон частот. Полезно делать межсекционную изоляцию большей толщины, чем межслойную. Однако, чем больше всяких прокладок, тем меньше коэффициент заполнения окна по меди, тем меньше КПД трансформатора. А это плохо, хотя бы потому, что сильнее влияет нелинейность намагничивания сердечника. То есть часто приходится искать «золотую середину». Не обязательно, но довольно желательно, делать пропитку трансформатора. Как известно, при даже при работе на нагрузку звуковой трансформатор звучит, а если включить ламповый усилитель без нагрузки, то можно довольно громко услышать музыку, издаваемую, как это не странно на первый взгляд, именно трансформатором, точнее — проводами его обмоток. Однако, подобное включение может привести к пробою обмоток и выходу трансформатора из строя. «При работе многих электроприборов можно услышать исходящий от них шум. Шум устройств, питающихся от бытовой электросети может быть похож на жужжание или гудение. Одна из возможных причин этого — магнитострикция сердечников в индуктивных конструкциях, таких так трансформаторы или дроссели. При протекании переменного тока через их катушки создаётся переменное магнитное поле такой же частоты, которое заставляет ферромагнитные сердечники сжиматься и растягиваться (с частотой 100 Гц для 50 Гц тока, или кратных частотах), которые в свою очередь передают эти колебания в воздух и другим элементам конструкции. Громкий шум может значительно ухудшить экологию окружающего пространства. Действие вибрации на внутренние элементы конструкции может послужить причиной развития трещин, способных вывести прибор из строя.» (по данным сайта www.wikipedia.org) Поэтому, чтоб провода в обмотке не колебались, по крайней мере в звуковом диапазоне частот, желательно делать пропитку обмоток. Еще вариант — несколько часов варить катушку трансформатора в воске (парафине), либо индивидуально пропитать каждый слой или секцию (ведь в секции может быть и несколько слоев) воском, что очень трудоемко. Впрочем, воск — далеко не единственный материал, годный для пропитки обмоток. Так же можно использовать эпоксидную смолу. Однако, она дает усадку и сильно разогревается при застывании. При правильной технологии всех этих неприятностей можно избежать. В профессиональном трансформаторостроении, как правило, эпоксидная смола применяется для самых дорогих и ответственных трансформаторов. Только нужно учесть, что трансформатор в экран с таким наполнителем вы поместите навсегда и его нельзя будет достать для замены или ремонта. Жидкие гвозди сильно дают усадку после высыхания, поэтому с ней надо просто аккуратно работать, не превышая критических объемов. Экранировать звуковой трансформатор полезно, так как. внешние наводки так же влияют на звук. Эффективность магнитных экранов увеличивается с ростом частоты и толщины стенок. Однако, с увеличением размеров экрана его эффективность снижается. Основными материалами для таких экранов нужно выбирать магнитомягкие материалы: технически чистое железо (АРМКО, 005ЖР, 008ЖР), карбонильное железо, низклуглеродистые нелегированные стали пермаллои. Эти материалы, имеющие требуемые магнитные свойства, удобны для изготовления экранов. Лучшими материалами для магнитных экранов следует считать железоникелевые сплавы (пермаллои), обладающие наибольшей магнитной проницаемостью в слабых магнитных полях. С учетом пригодности к пластическим деформациям лучше всего применять пермаллои марок: 79НМ, 80ХНС, 50ХНС, 81НМА [2]. В любом случае звук с экраном и без него заметно отличается. Не всякий провод пригоден для намотки. Не следует использовать провод от старых трансформаторов или дросселей, бывших в эксплуатации. В процессе работы эти компоненты могли разогреваться до высоких температур, от чего слой лакоизоляции может быть поврежден, и вероятность возникновения короткозамкнутых витков при намотке таким проводом резко возрастает. Крайне нежелательно мотать одну обмотку поочередно проводами различных диаметров (например, когда заканчивается один провод, а домотать надо, и взамен доматывают проводом близкого по величине диаметра). Кстати, при изготовлении трансформатора по его описанию следует учитывать какой диаметр провода дается — по лаку или по меди. Магнитопровод — так же далеко не случайный компонент в выходном трансформаторе, лучший материал для него — пермаллой. Чаще всего радиолюбители используют магнитопровод от трансформаторов старой аппаратуры. Магнитопровод таких трансформаторов, как правило, ржавый. Слой ржавчины можно удалить напильником или растворить соляной кислотой. Затем магнитопровод следует тщательно промыть проточной водой и просушить. Пластины магнитопровода полезно проклеить тонкой бумагой, либо залакировать. Лакировать можно через одну. То есть необходима электрическая изоляция пластин как можно более тонким диэлектриком. Здесь ситуация немного похожа на случай с толщиной межобмоточной изоляции. Отдельный вопрос — стяжка магнитопровода. Впрочем, тороидальный магнитопровод в стяжке не нуждается, но здесь возникает сложность с самой намоткой. Ш-образное железо трудоемко в сборке. Для примера попробуйте разобрать сердечник, например ТСШ-150, и затем собрать все его пластины обратно, то есть вперекрышку. Придется попотеть. Наиболее универсальным в плане сборки является U-образный сердечник. К нему, как правило, прилагаются стяжки (опять же вспомните ТС-180 из телевизора), и его удобно собирать/разбирать. Важно, чтоб при разборке такого магнитопровода не образовались трещины между пластинами, из которых он состоит. При образовании трещин их необходимо проклеить, например, эпоксидной смолой, иначе при включении трансформатора с поврежденным сердечником в сеть магнитопровод будет характерно трещать и греться. При сборке U-образного сердечника полезно пространство между его половинками промазать тонким слоем эпоксидной смолы для большей фиксации. Трансформатор с Ш-образным сердечником полезно устанавливать в металлический кожух. Он выполняет две функции: производит дополнительную стяжку трансформаторного железа, а так же служит элементом, посредством которого трансформатор крепится к корпусу усилителя. То же самое можно сказать о функциях стяжек U-образного сердечника. Силовые тороидальные трансформаторы, как правило, к корпусу крепят болтом, пропущенным через его (тора) отверстие. Со звуковым трансформатором делать так нежелательно, так как стальной болт, являясь магнитным материалом, находясь внутри тора, оказывает на него влияние, на звук, соответственно, тоже. Для примера поднесите при работе лампового усилителя к его выходному трансформатору магнит. Звук ощутимо изменится. Влияние болта, конечно, не так значительно, но, тем не менее, так же нежелательно. Впрочем, порой бывает удобнее фиксировать трансформатор в экране каким-либо наполнителем (о нем было сказано выше), предварительно выведя наружу экрана выводы обмоток для соответствующей коммутации.

Литература: 1. Гендин Г. — Особенности конструирования современных ламповых УЗЧ. — Радио, 2003, №2, с.15-17. 2. Прасов М. Т. Разработка и оформление электрических схем ЭВС: учебное пособие / М. Т. Прасов, Э. В. Мысловский. – ОФ МИП, 1990.

Читайте также:  Как и где нужно хранить виниловые диски?

Автор: Андрей Тимошенко https://www.heavil.ru

Вас может заинтересовать:
  1. Конеденсаторы БМТ-2
  2. Ламповый стабилизированный блок питания
  3. Краткая история возникновения Hi-Fi
  4. Концепция конструирования ламповых усилителей с цифровым управлением
  5. Таблица CD-Проигрывателей, ЦАП-ов и Транспортов

Комментарии к статьям на сайте временно отключены по причине огромного количества спама.

Реклама:

https://tv-online.fun где взять займ онлайн с исправлением кредитной истории.

Тороидальный трансформатор и его расчет

Для того чтобы значительно облегчить расчет тороидального трансформатора вам необходимо знать следующие данные:

  1. Выходное напряжение, которое будет подаваться на первичную обмотку U.
  2. Диаметр сердечника внешний D.
  3. Внутренний диаметр сердечника d.
  4. Магнитопровод

Площадь поперечного сечения S будет определять мощность трансформатора. Оптимальным значением на сегодняшний день считается 45-50 см. Рассчитать это значение достаточно просто и сделать это можно с помощью формулы:

Наиболее важной характеристикой сердечника считается площадь его окна S. Этот параметр будет определять интенсивность отвода избытков тепла. Оптимальное значение этого параметра может составлять 80-100 см. Вычисляется он по формуле:

Благодаря этим значениям вы легко рассчитаете его мощность по формуле:

P = 1,9 * Sc * S, где Sc и S необходимо брать в квадратных сантиметрах, а P получится в ваттах. Затем вам потребуется найти число витков на один вольт:

Когда значение k вам станет известным, то можно будет рассчитать количество витков во вторичной обмотке:

Производить расчеты лучше, если в качестве исходного значения использовать напряжение на вторичной обмотке:

W1 = (U1 * w2) / U2, где U1 – это напряжение, которое подводят к первичной обмотке, а U2 снимаемое со вторичной.

Сварочный ток проще всего регулировать с помощью изменения числа витков в первичной обмотке, так как здесь существует меньшое напряжение.

Процесс намотки обмоток

Намотка трансформатора заключается в намотке обмоток. Для этого провод, который планируется использовать для обмоток, наматывается на любую катушку туго (для упрощения процесса). Далее сама катушка устанавливается либо на приспособление, указанное выше, либо наматывается «вручную» (это сложно и неудобно). После этого на катушке обмотки закрепляется конец обмоточного провода, к которому припаивают выводной провод (это можно сделать как вначале, так и в конце операции). Далее начинают вращение катушки.

При этом катушка не должна никуда смещаться, а провод должен иметь сильное натяжение для плотной укладки.

Намотка витков провода продольно должна производиться так, чтобы витки прилегали друг к другу максимально плотно. После того, как был намотан первый ряд витков по длине, его обматывают специальной изоляционной бумагой в несколько слоев, после чего наматывают следующий ряд витков. При этом ряды должны плотно прилегать друг к другу.

В процессе намотки следует контролировать количество витков и остановиться после намотки нужного количества. Важно, чтобы считались полные витки, не учитывая расход провода (т.е. второй ряд витков требует большего количество провода, однако наматывают количество витков).

Стоят сварочные инверторы недорого, приобрести их сегодня – не проблема. И все же многих домашних мастеров интересует вопрос, как сделать трансформатор (сварочный) своими руками. Насколько это сложно, и как будет работать самодельный аппарат. В принципе, сделать его при правильном подходе несложно. Главное – это намотка трансформатора, потому что от правильно подобранного количества витков, от сечения используемой проволоки зависит мощность агрегата, качество его работы.

Итак, перед тем как намотать сварочный трансформатор, необходимо рассчитать его по всем требуемым параметрам. Необходимо отметить, что проводимый расчет не всегда соответствует типовым правилам и схемам, потому что собирается сварочный аппарат подчас не из тех материалов, которые используются при сборке в заводских условиях. То есть, что нашли, то и использовали.

К примеру, использовалось не самое лучшее трансформаторное железо или обмоточная проволока. Но даже после такой намотки трансформаторы прекрасно варят, хотя гудят и сильно нагреваются. Добавим, что выбирая трансформаторное железо, нужно обращать внимание на такой показатель, как форма сердечника. Она бывает броневой или стержневой. Второй тип используется в самодельных сварочных трансформаторах чаще, потому что обладают лучшим коэффициентом полезного действия. Правда, трудоемкость намотки трансформатора своими руками здесь намного выше. Но это не пугает мастеров.

Добавим, что намотать трансформатор можно по нескольким схемам.

  • Сетевая обмотка – это когда обе катушки получаются равноправными по числу витков и соединены они последовательно.
  • Обе обмотки соединены по принципу встречно-параллельно.
  • Намотанный провод расположен с одной стороны сердечника.
  • То же самое, что и в предыдущем положении, только на двух сторонах, соединенных последовательно.

Самая простая схема – последняя. Ее обычно и используют для сборки трансформатора в домашних условиях. В ней вторичная обмотка состоит из двух равных половинок. И они расположены на противоположных плечах магнитопровода. Соединение, как уже было сказано выше, последовательное.

В основе расчета лежат теоретические параметры, на основе которых придется сделать выбор фактических параметров магнитопровода. Главным параметром сварки является ток, который подается на электрод. Так как в быту чаще всего используют электроды диаметром 2; 3 или 4 мм, то для них достаточен будет ток мощностью 120-130 ампер. Теперь можно правильно рассчитать мощность сварочного трансформатора вот по этой формуле:

P=U x I x cos φ / η

U – это напряжение холостого хода, I – это сила тока (120-130 А), cos φ – принимается равным 0,8, η – это коэффициент полезного действия, который для самодельных сварочных аппаратов составляет 0,7.

Расчетная величина мощности должна по таблице свериться с сечением магнитопровода. Табличное значение при таких параметрах обычно составляет 28 см², но фактически необходимо выбирать из диапазона 25-60 см². Теперь по другим таблицам справочников подбирается количество витков провода относительно сечения сердечника.

Очень важный момент – чем больше площадь используемого сердечника для трансформатора, тем меньше витков в катушке должно быть. Все дело в том, что большое количество наматываемых витков может не поместиться в отверстие магнитопровода. Сам расчет количества витков производится вот по этой формуле:

N = 4960 × U/(S × I), где U – это напряжение источника питания на первичной обмотке, I – это ток вторичной обмотки, по сути, это тот самый сварочный ток, S – площадь сечения сердечника.

А количество витков на вторичной обмотке можно вычислить, используя соотношение:

U1/U2=N1/N2

Напряжение холостого хода на вторичной обмотке в самодельных сварочных трансформаторах равно 45-50 вольтам.

Изготовление тороидального сердечника

Тороидальные трансформаторы содержат в своей конструкции сложный сердечник. Лучшим материалом для его изготовления считается трансформаторная сталь. Для того чтобы изготовить сердечник тороидального трансформатора вам необходимо использовать стальную ленту. Ее необходимо свернуть в рулон, который будет иметь форму Тора. Если у вас уже есть такая форма, то никаких проблем возникнуть не должно.

izgotovlenie-toroidalnogo-serdechnika
Если значение внутреннего диаметра d будет недостаточным, то часть ленты необходимо отмотать. В результате этого у вас возрастут оба диаметра, и увеличится площадь всей поверхности. Правда при этом у вас может уменьшиться площадь поперечного сечения.

Хороший готовый сердечник вы также можете найти на лабораторном автотрансформаторе. Вам следует перемотать его обмотки. Измерительные трансформаторы имеют более простой сердечник.

Еще к одному способу изготовления тороидального сердечника относят использование пластин от неисправного промышленного трансформатора. Сначала из этих закрепок вам потребуется изготовить обруч. Его диаметр должен составлять 26 см. Внутрь этого обруча необходимо постепенно вставлять пластины. Следите за тем чтобы они не разматывались.

toroidalnyj-serdechnik
Если тороидальный трансформатор наберет необходимое сечение, тогда его магнитопровод готов. Для увеличения S вам необходимо сделать два тороида. Они должны иметь одинаковые размеры. Их края необходимо будет закруглить с помощью напильника. Из картона необходимо сделать два специальных кольца и две полоски для Тора. После их наложения все элементы следует обмотать изоляционной лентой. Теперь ваш магнитопровод готов.

Какими достоинствами обладает сердечник тороидального трансформатора

Напомним, что сердечник или магнитопровод тороидального трансформатора 220 изготавливается в виде кольца. А это практически идеальная форма в физическом плане. Для ее изготовления на производстве используется чаще всего лентообразный пермаллой, причем расход материала небольшой, уменьшена на конвейере отбраковка и обрезка. На втором этапе последовательного изготовления трансформатора на его сердечник наносится обмотка и равномерно без изъянов распределяется по заданной поверхности. Длина проводов обмотки небольшая, поэтому сила сопротивления в сегменте также уменьшена. И это обеспечивает тороидальному трансформатору высокий КПД. Немаловажную роль в этом играем сам сердечник тороидального трансформатора.

Намотка тороидального трансформатора

Намотка тороидального трансформатора – это достаточно сложный процесс, который занимает много времени. Тороидальный трансформатор имеет одну из наиболее сложных намоток. Наиболее простым способом считается использование специального челнока. На него следует намотать провод нужной длины и затем его через отверстия. Он имеет сложную конструкцию, но это не влияет на принцип работы трансформатора тороидального. После пропуска через челнок у вас начнет формироваться соответствующая обмотка.

namotka-toroidalnogo-transformatora
Челнок обычно изготавливается из дерева. Его толщина составляет 6 мм длина 40 см, а ширина 4 см. В его торцах вам следует сделать полукруглые вырезы. Для оценки его длины вам необходимо намотать провод на челнок, а значение умножить на количество витков. В этом случае запас должен составлять 20%.

chelnok-dlya-namotki-transformatora
Намотку необходимо делать с помощью кругового челнока. В качестве заготовки вам могут послужить согнутые пластмассовые трубы или обруч. Обруч необходимо распилить в одном месте и продеть его сквозь внутреннее окно сердечника. Провод в нескольких местах следует зафиксировать изолентой. Она не даст вашему проводу рассыпаться.

Надеемся, что благодаря этой статье вы самостоятельно сможете изготовить тороидальный трансформатор своими руками.

Плюсы и минусы использования тороидального трансформатора в качестве выходного

Если трансформатор тороидального типа собираются использовать для работы с ламповым усилителем, то сначала оценивают целесообразность этого поступка. Обычно сравнивают тс такого типа со стержневыми или броневыми вариантами, которые обладают похожей спецификой действий. В сравнении с ним у трансформаторов тороидальных имеются такие преимущества:

  • нет зазоров и стыков в сердечнике;
  • сталь используется прямым методом, так как направляющие проката и магнитного поля, образуемого элементами, идентичное;
  • использоваться могут варианты стали марок Э-340, Э-370 и другие.

Поток рассеяния катушки, которая использоваться в тс, должен быть равен нулю. Только использование пластинки из стали позволяет достичь этого показателя. В отличии от оборудования стандартного вида в этих типах магнитное поле, вызываемое внешними раздражителями, практически не влияет на работу.

Использование тороидального трансформатора в качестве выходного для лампового усилителя соответственно позволяет уменьшить влияние окружающих помех. Тороидальный сердечник, если сравнивать его с обычным, показывает гораздо большие экономические и электрические показатели. Его использование более целесообразно.

Сталь в составе позволяет устранить нелинейные искажения. Кроме того, так как напряжение не колеблеться, величина индукции максимальная, то вес и объем сердечника уменьшается, следовательно устройство само весит меньше.

Отдельно специалисты отмечают простоту использования и удобство приборов. Экранов нет, что позволяет комфортно закреплять их. Но следует понимать, что есть и недостатки. К числу таких относится стоимость намотки — она выходит несколько выше.

Оцените статью
Добавить комментарий