Индикатор уровня сетевого напряжения на светодиодах. Индикатор напряжения сети

Простая схема для определения коротких «провалов» напряжения сети.

Отечественное энергоснабжение

О невысоком качестве отечественного энергоснабжения известно всем, и сказано об этом немало. Вместо допуска по напряжению +/- 10 процентов, что составляет 180…240 В сетевое напряжение может «плавать» в диапазоне 160…260 и более В.

С такими медленными изменениями напряжения вполне успешно справляются стабилизаторы переменного напряжения на базе автотрансформаторов, например. Подобные стабилизаторы предназначены в основном для такой техники как холодильник, стиральная машина, электроплита.

Электронные стабилизаторы

Современная же электронная бытовая аппаратура таких стабилизаторов не требует, так как вся стабилизация напряжений осуществляется, как правило, внутренними полупроводниковыми стабилизаторами.

В очень большом диапазоне входных сетевых напряжений способны работать импульсные источники питания. Сейчас такими источниками оснащена практически вся электронная аппаратура. Например, многие современные телевизоры вполне работоспособны в диапазоне напряжения в розетке 100…280 В.

Импульсные помехи

Но, к сожалению, кроме таких медленных изменений сетевого напряжения, которые можно увидеть невооруженным глазом по миганию освещения, существуют еще кратковременные «провалы». Они носят импульсный характер, а от случайной импульсной помехи не способен защитить ни один стабилизатор.

Такие «провалы», незаметные даже по миганию освещения, неприятностей могут принести немало. Вдруг, ни с того ни с сего, произвольно перезагружается недавно приобретенный компьютер, работавшая всегда прилежно стиральная машина, заново начинает еще не законченный цикл стирки, микроволновка тоже сбивается с заданной программы.

Некоторые аппараты, например телевизоры, находящиеся в дежурном режиме, самопроизвольно включаются, или в процессе работы сами переключают каналы. Создается впечатление, что электронная техника понемногу приходит в негодность. А может ее уже пора нести в ремонт?

Индикатор «провалов» в сети

О подобных неприятных ситуациях может проинформировать описываемое ниже устройство — индикатор кратковременных «провалов» напряжения сети. Ведь если вдруг Ваш компьютер начал «самостоятельно» перезагружаться, а в это время раздался звуковой сигнал индикатора, зафиксировавший «провал» сетевого напряжения, то с достаточной долей уверенности можно сказать, что компьютер тут не виноват. Даже источники бесперебойного питания с импульсными помехами справляются не всегда.

Схема индикатора достаточно проста и показана на рисунке 1.

Рисунок 1. Индикатор коротких «провалов» сетевого напряжения.

Как видно по рисунку, схема прибора достаточно проста, содержит малое количество деталей, которые, к тому же стоят не дорого и дефицитом не являются. Поэтому для повторения схемы слишком высокой квалификации не требуется: если Вы умеете держать в руках паяльник, то особых проблем возникнуть не должно.

Работа схемы

Работает схема следующим образом. На элементах VD2, R3…R5, C2 и C4 собран датчик сетевого напряжения. Именно с его помощью и определяются «провалы» в сети. При подаче сетевого напряжения конденсаторы C2 и C4 быстро зарядятся до напряжения, указанного на схеме. Поэтому на входе DD1 присутствует логическая единица.

На элементах VD1, VD3, R2, C3, C6 собран блок питания устройства. Следует обратить внимание на то, что конденсатор С6 заряжается до напряжения 9В достаточно долго — около тридцати секунд. Это обусловлено большой постоянной времени цепочки R2, C3, C6. Поэтому при первоначальном включении прибора на выходе элемента DD1.1 устанавливается низкий уровень напряжения.

Конденсатор С5 при включении был разряжен, то есть имел низкий логический уровень. Как видно из схемы конденсатор С5 через резистор R8 соединен со входом триггера Шмитта, выполненного на элементах DD1.2…DD1.4. поэтому на выходе триггера Шмитта будет также низкий уровень напряжения. Поэтому светодиод HL1 будет погашен, а звуковой излучатель HA1 будет молчать. Для увеличения нагрузочной способности выходного каскада применено параллельное соединение элементов DD1.3 и DD1.4.

Тут следует заметить, что подобное соединение допустимо лишь в том случае, если оба принадлежат одному корпусу микросхемы и обладают идентичными параметрами. Такое соединение элементов находящихся в разных корпусах недопустимо.

Вышеописанное состояния индикатора будет сохраняться до тех пор, пока не будет «провала» сетевого напряжения. В случае же значительного уменьшения напряжения сети длительностью не менее 60 мс происходит разряд конденсаторов С2 и С4.

Другими словами на входе элемента DD1.1 появится низкий уровень, который приведет к появлению высокого уровня на выходе DD1.1. Этот высокий уровень приводит к заряду через диод VD4 конденсатора С5, то есть появлению высокого уровня на входе триггера Шмитта и соответственно такого же уровня на его выходе. (Логика работы триггера Шмитта была описана в одной из статей из цикла «Логические микросхемы»).

Современная элементная база позволяет заметно упростить схемное решение многих устройств. В данном случае применен звуковой излучатель со встроенным генератором. Поэтому для получения звука достаточно подать на излучатель просто постоянное напряжение.

В данном случае это будет напряжение высокого уровня с выхода триггера Шмитта. (Когда излучатели были без встроенного генератора, его приходилось собирать также на микросхемах.) Последовательно со звуковым излучателем установлен светодиод HL1 обеспечивающий световую индикацию «провала».

В таком состоянии триггер Шмитта будет находиться еще некоторое время после того, как «провал» уже закончится. Это время обусловлено зарядом конденсатора С5 и при указанных на схеме номиналах элементов составит примерно 1 секунду. Можно сказать, что просто происходит растягивание «провала» по времени.

После разряда конденсатора С5 устройство вновь возвращается в режим слежения за состоянием напряжения сети. Для предотвращения ложных срабатываний устройства от помех на входе установлен помехозащитный фильтр L1, C1, R1.

Несколько слов о деталях и конструкции

Кроме указанных на схеме элементов возможны следующие замены. Микросхему К561ЛА7 можно заменить без переделки схемы и платы на К561ЛЕ5, либо на импортный аналог любой из КМОП серий. Не рекомендуется применять микросхемы серии К176 не имеющие встроенных защитных диодов по входам, так как входное напряжение микросхемы в данной конструкции превышает напряжение питания. Такое обстоятельство может привести к выходу микросхемы серии К176 из строя ввиду «тиристорного эффекта».

Стабилитрон VD3 можно заменить любым маломощным с напряжением стабилизации около 9 В. Вместо диодов КД521 подойдут любые импульсные кремниевые диоды, например КД503, КД510, КД522, либо импортные 1N4148, диоды КД243 можно заменить на 1N4007.

Высоковольтный керамический конденсатор С1 типа К15-5. Вместо него возможно применение пленочного конденсатора на рабочее напряжение не менее 630В, правда за счет некоторого снижения надежности. Также пленочным должен быть конденсатор С2. Электролитические конденсаторы лучше применить импортные.

Указанный на схеме светодиод можно заменить практически любым отечественным или импортным, желательно красного цвета. Звуковой излучатель можно заменить на любой из серии EFM: EFM — 250, EFM — 472A.

Весь индикатор смонтирован на печатной плате, показанной на рисунке 2.

На плате установлены все детали кроме светодиода и звукового излучателя. Плату можно установить в отдельной пластмассовой коробке подходящих размеров, либо, если позволяет место, непосредственно в корпусе фильтра — удлинителя.

Настройка устройства сводится к подбору емкости конденсаторов С2 и С4. Удобнее подбирать емкость конденсатора С4. Делается это следующим образом: его емкость уменьшается до тех пор, пока пульсации напряжения на входе элемента DD1.1 не вызовут срабатывание устройства. По достижении такого результата следует заменить конденсатор С4 конденсатором с емкостью на 30 процентов больше подобранной.

Проверить правильность работы индикатора можно включением в ту же розетку галогенной лампы мощностью не менее полутора — двух киловатт. В момент включения должен раздаваться сигнал индикатора — сказываются повышенные токи в момент включения ламп. На этом наладку индикатора можно считать законченной.

Борис Аладышкин

При выборе светового индикатора сетевого напряжения разработчик электронной аппаратуры может воспользоваться одним из трех основных вариантов, т.е. может применить неоновую лампу, лампу накаливания или светодиод. Преимущества неоновой лампы — возможность непосредственного подключения к электросети переменного тока и малое потребление мощности. Для установки лампы накаливания необходим понижающий трансформатор, т.е. обеспечивается только косвенный признак наличия сетевого напряжения, и, как правило мощность рассеивания больше, чем у неоновой лампы.

Использование светодиода — идеальная альтернатива обоим вышеупомянутым подходам, так как он имеет значительно больший срок службы чем неоновая пампа или лампа накаливания. Мощность рассеивания светодиода не больше 20…30мВт.

Так как светодиод — маломощный элемент, его необходимо защитить от больших токов. Один из вариантов защиты заключается в использовании последовательного резистора при напряжении сети, например, 240В, при этом его мощность рассеивания будет около 3,5Вт. Другой вариант показан на рисунке. Ток через светодиод ограничивается не сопротивлением гасящего резистора, а реактивным сопротивлением конденсатора. Преимущество этого метода состоит в том, что на конденсаторе не рассеивается мощность, так как ток, проходящий через него, на 90° не совпадает по фазе с приложенным к нему напряжением.

Формула для вычисления мощности рассеивания для напряжения переменного тока:

Pc=i*Uc*Cosф

Сдвиг фазы на 90°, который имеет место на конденсаторе, приводит к нулевому рассеиванию мощности (т.к. cos90° = 0) Pc = 0.

Емкость конденсатора С может быть вычислена для любого данного напряжения, частоты и тока при помощи следующего уравнения:

C = i/(6.28*U*f)

,

где С — емкость в фарадах, U — среднеквадратическое значение напряжения, f — частота сети в Гц, i — ток через светодиод в амперах.

При напряжении сети 240В и частоте 50Гц для тока 20мА самый близкий подходящий номинал конденсатора — 330нФ. Рабочее напряжение конденсатора должно быть по крайней мере в два раза больше напряжения сети.

Индикатор сетевого напряжения индивидуального пользования просто необходим в домашних условиях для обеспечения надежной и безотказной работы бытовой радиоэлектронной аппаратуры, особенно в местах с постоянными колебаниями напряжения сети.

Содержание
  1. Индикатор напряжения сети
  2. Светодиод-индикатор сетевого напряжения
  3. Пробник
  4. Светодиодный пробник-индикатор
  5. Работа с сетью 220В
  6. Индикатор для микросхем (логический пробник)
  7. Схема индикатора тока заряда
  8. Индикаторная отвертка — указатель напряжения со световым оповещением, контактного типа
  9. Проверим данный индикатор в работе
  10. Подведем итоги тестирования
  11. Много дыма, мало мощности
  12. Цифровая индикаторная отвертка, с функциями контактного и бесконтактного определения напряжения
  13. Проверим указатель напряжения в работе
  14. Подведем итоги испытания данного указателя напряжения:
  15. Указатель напряжения с функциями бесконтактной, звуковой и контактной световой индикацией
  16. Проверим указатель в работе
  17. Подведем итоги по тестированию данного указателя напряжения
  18. Двухполюсный указатель напряжения, двухконтактного типа, с функцией определения значений напряжения
  19. Проверим двухполюсный указатель напряжения в работе
  20. Подведем итоги тестирования двухполюсного указателя напряжения
  21. WM-1 индикатор потребляемой мощности на DIN рейку.
Читайте также:  Электронная лампа

Индикатор напряжения сети

Ниже представлен вариант индикатора-измерителя сетевого напряжения с индицируемой величиной напряжения 200-400 вольт на 16 светодиодах из доступных радиоэлементов.

Светодиод-индикатор сетевого напряжения

При всем удобстве использования светодиода необходимо учитывать, что работать ему придется не с постоянным, а с переменным напряжением при высокой амплитуде, на которые он не рассчитан. То есть в при его использовании в подобных схемах необходимо предусмотреть защиту светодиода от этих неблагоприятных факторов.

svetodiod-indikator-setevogo-napryazheniya-r06-1996

Пробник

Этот пробник позволяет быстро проверить наличие постоянного или переменного напряжения от 5 до 300 вольт, в интервале от 5 до 60 вольт позволяет приблизительно измерить напряжение, точно установит характер контролируемого напряжения.

Светодиодный пробник-индикатор

Простейший пробник-индикатор из 5 светодиодов позволяет выявить характер и наличие напряжения, и примерное сопротивление.

В любой технике в качестве отображения режимов работы используют светодиоды. Причины очевидны – низкая стоимость, сверхмалое энергопотребление, высокая надёжность. Поскольку схемы индикаторов очень просты, нет необходимости в покупке фабричных изделий.

Из обилия схем, для изготовления указателя напряжения на светодиодах своими руками, можно подобрать наиболее оптимальный вариант. Индикатор можно собрать за пару минут из самых распространённых радиоэлементов.

Все подобные схемы по назначению делят на индикаторы напряжения и индикаторы тока.

Работа с сетью 220В

Рассмотрим простейший вариант – проверка фазы.

Эта схема представляет собой световой индикатор тока, которым оснащают некоторые отвёртки. Такое устройство даже не требует внешнего питания, поскольку разность потенциала между фазовым проводом и воздухом или рукой достаточна для свечения диода.

Для отображения сетевого напряжения, например, проверки наличия тока в разъёме розетки, схема ещё проще.

Простейший индикатор тока на светодиодах 220В собирается на ёмкостном сопротивлении для ограничения тока светодиода и диода для защиты от обратной полуволны.

Индикатор для микросхем (логический пробник)

Если возникает необходимость проверить работоспособность микросхемы, поможет в этом простейший пробник с тремя устойчивыми состояниями. При отсутствии сигнала (обрыв цепи) диоды не горят. При наличии логического ноля на контакте возникает напряжение около 0,5 В, которое открывает транзистор Т1, при логической единице (около 2,4В) открывается транзистор Т2.

Такая селективность достигается, благодаря различным параметрам используемых транзисторов. У КТ315Б напряжение открытия 0,4-0,5В, у КТ203Б – 1В. При необходимости можно заменить транзисторы другими с аналогичными параметрами.

Очень нужный в хозяйстве инструмент, который в обязательном порядке должен присутствовать в каждой квартире или доме. Наверняка, в жизни каждого человека, случалась такая ситуация когда вдруг внезапно по непонятным причинам гас свет. Первая реакция любого человека растерянность, а в некоторых случаях даже паника. Что случилось, где свет, куда пропало электричество, как теперь быть и что делать? По прошествии некоторого времени посещают мысли примерно такого содержания, интересно это только у меня свет пропал или везде?

При правильно подходе к делу ответы на все эти вопросы с легкостью может дать указатель напряжения

. С его помощью можно без проблем определить наличие или или на выключателе. А так же, установить присутствие или отсутствие напряжение на вводном автомате и счетчике электроэнергии.

В данной статье мы ознакомимся с наиболее распространенными в быту видами указателей напряжения, разберем наглядные методы работы с каждым из них, плюсы и минусы, а так же по каждому из вариантов подведем итог на предмет удобства использования в быту.

Сейчас на рынке электрооборудования представлено огромное множество различного типа указателей напряжения, какой выбрать и как не прогадать с покупкой? Давайте разбираться.

В данной статье мы рассмотрим основные виды указателей напряжения,

Схема индикатора тока заряда

Если зарядное устройство (ЗУ) для автомобильных аккумуляторов не имеет амперметра, трудно гарантировать их надежную зарядку. Возможно ухудшение (пропадание) контакта на клеммах батареи, обнаружить которое достаточно трудно. Вместо амперметра предлагаю простой индикатор буквально из нескольких деталей. Он включается в разрыв «плюсового» провода от ЗУ к АБ.

Индикатор тока заряда
Рис. 1. Индикатор тока заряда

Схема на рис.1 представляет собой транзисторный ключ VT1, включающий светодиод HL1, когда через R1 протекает заданный ток. В этом случае падения напряжения на резисторе R1 (более 0,6 В) достаточно для открывания транзистора VT1 и зажигания HL1. Для конкретного аккумулятора номинал R1 подбирается так, чтобы светодиод зажигался при требуемом зарядном токе. По яркости его свечения можно приблизительно оценить зарядный ток. Резистор R1 — проволочный, изготавливается из 6…12 витков обмоточного провода диаметром 1 мм. Можно использовать проволоку с высоким удельным сопротивлением (нихром) или резистор промышленного изготовления, например, ПЭВР-10.

Индикатор тока заряда на КР293КП4
Рис. 2. Индикатор тока заряда на КР293КП4

На рис.2 показана аналогичная схема, но с применением оптоэлектронного ключа КР293КП4. Такие оптроны популярны сегодня среди радиолюбителей, они позволяют конструировать радиоэлектронные устройства с минимальным количеством элементов. Резистор, ограничивающий ток в цепи светодиода оптрона, не нужен, так как для уверенного срабатывания ключа необходимо напряжение на контактах 3,4 порядка 1,1… 1,5 В. Ток в этой цепи — 10… 15 мА. Особенность схемы — в подключении исполнительного устройства на оптронном ключе. Как видно из рисунка, вход оптрона (светодиод) включается у клеммы «+» ЗУ с одной стороны, и у соответствующей клеммы «+» АБ — с другой. Резистором, на котором падает напряжение, в данном случае является сам соединительный провод между ЗУ и АБ, имеющий длину 0,8…1,5 м. При надежном контакте в клеммах, падения напряжения на нем достаточно для срабатывания оптронного ключа. Контакты 5, 6 VU1 замыкаются, в цепи HL1 течет ток, и светодиод горит.

При использовании этого индикатора в приборах с большим напряжением питания, например, для зарядки АБ грузовых автомобилей с напряжением бортовой сети 24 В, необходимо подобрать величину R1, чтобы ток через светодиод не превышал максимально допустимый.

Такие индикаторы тока можно применить и в других конструкциях, где необходим контроль тока нагрузки. Включаются они аналогичным способом — между нагрузкой и источником питания.

Индикаторная отвертка — указатель напряжения со световым оповещением, контактного типа

Данный индикатор напряжения имеет одну функцию, определение наличия или отсутствия напряжения, на проводе или контакте электрооборудования.

Указатель данного типа имеет две рабочие части. Первая имеет форму плоской отвертки, контактирует непосредственно с находящимся под напряжением элементом электропроводки.

Вторая часть расположена на рукоятке индикаторной отвертки, необходима для создания сопротивления.

Проверим данный индикатор в работе

Рассмотрим применение данной отвертки на конкретном примере. У нас имеется, к одному контакту которого подключен фазный провод, к другому нулевой. Индикатор напряжения укажет на каком проводе находится фаза.

Для определения зажимаем большим пальцем контакт расположенный на рукоятке указателя напряжения и поочередно подносим рабочую часть индикатора сначала к одному, потом к другому контакту автоматического выключателя. Большой палец при этом должен быть голый, без перчаток.

Если на контакте присутствует напряжение индикатор указателя его покажет, загорится слабый красный или оранжевый огонек внутри отвертки. А на нулевом контакте (в нашем примере к нему подходит синий провод) индикатор не покажет ничего.

Подведем итоги тестирования

Плюсы:

  • не имеет элементов питания, работает непосредственно от фазы;
  • за счет простой конструкции исполнения обладает высокой точностью и надежностью;
  • имеется возможность, при острой необходимости, использовать указатель напряжения в качестве плоской отвертки;
  • прост в эксплуатации;
  • срок службы не ограничен;
  • сохраняет работоспособность при любых температурных условиях окружающей среды.

Минусы:

  • очень слабая лампочка индикации наличия напряжения, на солнце очень тяжело рассмотреть;
  • для работы с индикатором приходится снимать защитные перчатки.

Делаем вывод:

Очень простой и надежный указатель напряжения, для работ внутри помещений будет идеальным вариантом.

Много дыма, мало мощности

Газогенераторный автомобиль использует в качестве базового топлива не бензин, а газ, вырабатываемый из древесного угля или древесины специальным устройством, которое и именуется газогенератором. Затем этот газ фильтруется и подается не в паровую машину, а в обычный, лишь слегка модифицированный двигатель внутреннего сгорания. Большие и хорошо заметные «бочки», вертикальные цилиндры, обычно установленные в кузове таких машин, — это газогенераторы, производящие этот газ, а густой дым является побочным продуктом химической реакции при его выделении. Газогенераторный автомобиль не северокорейское изобретение. Технология эта была известна в Европе еще в начале XX века. Во время Второй мировой войны, следствием которой стала острая нехватка топлива для гражданских нужд, многие автомобили были переоборудованы в газогенераторные. Некоторые страны (включая Германию и СССР) в 1930-е и 1940-е годы даже серийно выпускали автомобили, специально созданные для работы на этом экзотическом топливе. В то же самое время газогенераторные машины использовались в Японии и колониальной Корее. Однако по окончании войны они были почти немедленно выведены из эксплуатации: люди снова пересели на бензиновые или дизельные автомобили.

Нефтеснабжение всегда было болезненным вопросом для северокорейской экономики. В стране отсутствуют собственные нефтяные месторождения, и поэтому она полностью зависит от импорта нефти и жидкого топлива. Изначально нефть поступала из СССР и Китая. До конца 1980-х годов из политических соображений обе эти страны продавали Пхеньяну нефть значительно дешевле, чем она стоила на мировом рынке. Тем не менее даже в лучшие времена импорт нефти оставался финансовым бременем для КНДР, да и особого доверия ни к Москве, ни к Пекину тогда северокорейское руководство не испытывало и зависеть от них в столь важном вопросе не хотело. Поэтому в 1978 году было принято решение переоборудовать некоторые корейские грузовики под газогенераторы. Первые эксперименты проводились на грузовике «Сынни-58». Результаты оказались успешными, и в середине 1980-х годов была запущена масштабная программа перехода на газогенераторные двигатели. К началу 1990-х годов около 70–80% северокорейских грузовиков и автобусов, включая почти весь сельский транспорт, работало на древесном угле, древесине и даже стеблях кукурузы. Это решение оказалось неожиданно своевременным. В начале 1990-х годов бывшие союзники — традиционные поставщики нефти — стали вести торговлю с КНДР по мировым ценам. Конверсионная программа помогла частично смягчить шок от этого удара.

Читайте также:  Коаксиальный кабель: области применения, подключение и особенности установкаа

Цифровая индикаторная отвертка, с функциями контактного и бесконтактного определения напряжения

Данный указатель напряжения не имеет никаких источников электропитания.

На его корпусе имеется окошечко с жидкокристаллическим дисплеем, на котором высвечиваются цифровые значения напряжения 12, 36, 55, 110, 220 Вольт.

Так же имеются две полюсные кнопки. Первая, предназначена для бесконтактного измерения напряжения.

Вторая, для контактного измерения.

Индикатор имеет одну рабочую часть, выполненную в виде плоской отвертки.

Проверим указатель напряжения в работе

В первую очередь, протестируем контактный способ измерения. Подносим индикатор к первому, нулевому контакту автоматического выключателя. На дисплее индикатора появляется значение равное 55 В.

Небольшое напряжение действительно может присутствовать на нулевом проводе, но как правило, оно наблюдается только при нагрузках (работающем электрическом оборудовании). Наш автомат в момент измерений был отключен, то есть фактическая нагрузка отсутствовала.

Теперь, подносим индикатор к фазному контакту.

На нем индикатор четко показал 110 Вольт. Реальное значение напряжение равное 220 В на дисплее указателя высветилось едва различимым.

Попытки заставить указатель напряжения работать в бесконтактном режиме успехом не увенчались, но была выявлена не заявленная в руководстве по эксплуатации цифрового индикатора функция, если не нажимая на кнопки коснуться фазы, индикатор показывает на дисплее еле видную молнию, указывающую на наличие напряжения.

Подведем итоги испытания данного указателя напряжения:

Плюсы:

  • не имеет источника питания;
  • показывает примерные цифровые значения напряжения.

Минусы:

  • не работает заявленная производителем бесконтактная функция определения напряжения;
  • ограничения по температуре окружающей среды от -10 до +50 градусов Цельсия;
  • имеет ограничения по измеряемому напряжению 250 В;
  • согласно инструкции, запрещено прикасаться к двум кнопкам сразу (наверное может ударить током
    ).

Делаем вывод:

Данный индикатор является очень ненадежным в эксплуатации.

Указатель напряжения с функциями бесконтактной, звуковой и контактной световой индикацией

Данный индикатор в отличии от своих конкурентов, представленных выше, помимо светового оповещения, имеет еще и звуковое. Эта функция делает данный прибор очень безопасным при определении наличия или отсутствия напряжения.

На данном указателе, бесконтактный режим определения наличия напряжения, имеет звуковое оповещение, при этом, он сопровождается световой индикацией зеленого цвета.

Контактный режим, имеет только световое оповещение, сопровождается индикацией красного цвета.

Для этого на приборе предусмотрены две светодиодные лампочки.

Для звука имеется динамик.

На торце указателя расположен переключатель режимов работы:

  1. «O» — функция контактного светового оповещения, сопровождается свечением красной лампочки, определяет наличие напряжения только при непосредственном контакте с фазой;
  2. «L» — функция бесконтактного звукового оповещения средней чувствительности, сопровождается свечением зеленой лампочки, определяет напряжение с небольшого расстояния, даже через двойную изоляцию провода;
  3. «H» — функция звукового оповещения максимальной чувствительности, сопровождается свечением зеленой лампочки, определяет наличие напряжения с большого расстояния через изоляцию провода.

Рабочая часть скрытая под защитным колпачком, выполнена в виде плоской отвертки.

На торце указателя напряжения предусмотрен специальный контакт, который в совокупности с основной рабочей частью прибора используется для определения целостности цепи. Режим так называемой «прозвонки».

Последовательность работы в режиме «прозвонки»:

  • снимаем перчатки;
  • зажимаем пальцем правой руки торцевой контакт индикатора напряжения;
  • далее, основной рабочей частью (выполненной под плоскую отвертку), касаемся одного конца жилы проверяемого провода;
  • до второго конца провода необходимо дотронуться пальцами левой руки.

Если цепь целая, то:

  • в режиме «О» — загорится красная лампочка;
  • в режиме «L» и «H» — будет гореть зеленая лампочка в сопровождении с звуковым сигналом;

Если цепь повреждена:

  • ни в одном из режимов индикатор реагировать не будет.

Проверим указатель в работе

Включаем режим контактной индикации — «О».

Теперь, поочередно подносим указатель напряжения сначала к нулевому контакту автоматического выключателя, где он как и положено ничего не показывает.

Затем, к фазному контакту. Световая индикация указателя напряжения загорелась.

Переходим к бесконтактному режиму средней звуковой и световой индикации «L».

Данный режим может работать как с голой рабочей частью указателя, так и с защищенной колпачком. Итак, включаем режим и подносим указатель к автоматическому выключателю. Контактов касаться не нужно! Держим прибор на расстоянии 1-2 см от токоведущих частей. Возле нулевого контакта индикаторы указателя молчат, а возле фазного начинают издавать звуковое и световое оповещение, загорается зеленая лампочка.

Тестируем прибор в последнем положении переключателя -«H», режим повышенной чувствительности бесконтактной звуковой и световой индикации.

Пользоваться данным режимом можно как с надетым, так и со снятым колпачком. Включаем прибор и подносим его к автоматическому выключателю.

Указатель включает звуковое и световое оповещение при обнаружении на одной из жил провода или кабеля фазы уже за 20 сантиметров до контактов автоматического выключателя.

Подведем итоги по тестированию данного указателя напряжения

Плюсы:

  • большой набор функций, три режима индикации, одна световая и две звуковые;
  • возможность определять напряжение на расстоянии;
  • бесконтактная световая индикация дублируется звуковой;
  • имеется функция проверки целостности цепи.

Минусы:

  • прибор работает от батареек типа LR44, 157, А76 или V13GA, довольно быстро садятся. Перед проведением работ требуется предварительная проверка работоспособности прибора;
  • рабочая температура окружающей среды от-10 до +50 градусов Цельсия.

Вывод:

Отличный, понятный и адекватный прибор, с широким набором функций. Подойдет как для профессионала, так и для новичка.

Двухполюсный указатель напряжения, двухконтактного типа, с функцией определения значений напряжения

Данный указатель напряжения относится к разряду профессиональных. В отличии от обычных однополюсных указателей он не может определить на каком из контактов находиться фаза, но может оповестить о наличии напряжения в целом.

Данное устройство состоит из двух щупов, на конце каждого из которых располагается рабочая часть изготовленная в виде острых штырьков, щупы соединенных между собой мягким медным проводом.

На одном из них имеется индикаторная шкала с нанесенными на нее ступенчатыми значениями напряжения 6, 12, 24, 50, 110, 120 и 380 Вольт.

Производя замеры, используя двухполюсный указатель, прибор покажет, в каком диапазоне находится измеряемое напряжение. Может использоваться в сети 380 Вольт.

Единственный из индикаторов способный точно определить конкретное напряжение сети 220 или 380 Вольт, а так же выявить в сети 220 Вольт.

Прибор имеет две рабочие части.

Первая, выполнена в виде острого щупа расположенного на основном на корпусе прибора.

Вторая, расположена на дополнительном корпусе, ее рабочая часть так же имеет вид острого щупа.

Проверим двухполюсный указатель напряжения в работе

Для работы прибора нужны два контакта, фаза и ноль или фаза и земля. Одним рабочим элементом дотрагиваемся до фазного контакта, другим до нулевого или контакта заземления. В нашем примере, на двухполюсном автоматическом выключателе присутствую фаза и ноль. Касаемся рабочими частями прибора контактов автоматического выключателя. Щуп основной части вставляем в один контакт, щуп дополнительной другой.

При наличии на автомате напряжения индикаторные лампочки указателя начинают светиться. На шкале основной части указателя высвечивается значение равное напряжению сети. В нашем примере, индикация показывает напряжение равное 220 Вольтам, что соответствует реальной действительности.

Подведем итоги тестирования двухполюсного указателя напряжения

Плюсы:

  • имеет ступенчатую шкалу определения напряжения;
  • имеет возможность работы в сети 220 и 380 Вольт;
  • способен определить перенапряжение в сети 220 Вольт;
  • не имеет элементов электрического питания;

Минусы:

  • слабое место гибкая проводная связь между основной и дополнительной частями прибора;
  • относительно выше представленных указателей напряжения довольно громоздкий;
  • не может определить где фаза, а где ноль;
  • температура окружающей среды для стабильной работы прибора ограничена от -10 до +50 градусов Цельсия.

Вывод:

Данный индикатор хорош в профессиональных электрических работах. Для бытовых нужд, в дополнение к нему лучше приобрести индикаторную отвертку.

WM-1 индикатор потребляемой мощности на DIN рейку.

WM-1

Индикатор потребляемой мощности. (+ индикация V и I)

Индикатор потребляемой мощности напряжения и тока с монтажом на DIN рейку WM-1, является универсальным прибором отображающим уровень потребляемой мощности до 10 кВт, тока до 50А (через встроенный в корпус трансформатор тока) и напряжения от 100 до 300 V в однофазной сети. В случае использования внешних токовых трансформаторов, пользователь может настроить индикатор для контроля мощности до 999 кВт. Отображаемый текущий параметр выбирается при помощи кнопок, расположенных на передней панели управления.

Физические параметры (значения) потребляемой мощности, напряжения, силы тока будут измерены и отображены на высококонтрастном, трехразрядном, светодиодном индикаторе. Питание индикатора потребляемой мощности WM-1 осуществляется от контролируемой сети. На задней панели индикатора расположен замок крепление к DIN-рейке 35 мм. К корпусе WM-1 имеется вертикальное, сквозное отверстие встроенного трансформатора тока, через которое заводится провод питания контролируемой нагрузки.

Настройка индикатора потребляемой мощности WM-1.

На передней панели индикатора расположены 3 кнопки управления. Для выбора режима отображения необходимо нажать на кнопку «PROG» несколько раз до появления требуемого режима, где:

I – режим отображения силы тока.

U – режим отображения напряжения в сети

P – режим отображения мощности

При работе с внешним трансформатором вводится коэффициент трансформации. Так для измерения токов до 500А используется трансформатор с коэффициентом трансформации 500/5А. Устанавливаем значение 500/5=100. Для этого необходимо нажать и удерживать около 4 сек. кнопку «PROG», кратковременно высветится «С» коэффициент трансформации, кнопками «+» или «-» выбираем нужное значение. Для выхода в рабочий режим произвести кратковременное нажатие «PROG». При отсутствии внешних трансформаторов значение «С» =1.

Технические характеристики.

Напряжение питания 220В 50Гц
Диапазон мощности 0,5-10 кВт*
Диапазон напряжения 100-300 В
Диапазон токов 1…50А*
Диапазон рабочих температур -25 … +50 °С
Погрешность измерения 3%
Подключение Винтовые зажимы 2,5 мм
Габариты 52,5х90х65
Тип корпуса 3S
Монтаж на DIN-рейке 35 мм
Гарантия 2 года

*С внешними ТТ до 999А и 999кВт.

Схема подключения WM-1 при измерении токов до 50А.

Цена (Прайс).

Наименование руб./шт с ндс
WM-1 индикатор потребляемой мощности, тока, напряжения 3064-00

В РАЗДЕЛ В КАТАЛОГ

Оцените статью
Добавить комментарий