Конденсатор в качестве сопротивления в сети переменного тока

tablica-napryazheniya-bloka-pitaniya

81656523

26611819

moj_samodelnyj_pribor

izmerenie_moim_priborom

38727207

Программная диагностика блока питания

Блок питания отвечает за поступление электричества к остальным комплектующим компьютера. Поэтому важно быть уверенным в том, что он исправен. В противном случае можно получить сгоревший системник, восстановление которого потребует намного больше денег, чем покупка нового БП.

Таблица напряжения

Прежде чем переходить к проверке блока питания, нужно посмотреть таблицу значений по напряжению. В ней указаны минимальные, нормальные и максимальные показатели.

Таблица напряжения блока питания

Если значение напряжения выходит за установленные рамки в любую сторону, то блок питания необходимо заменить. Или попытаться отремонтировать — об этом мы поговорим далее.

Проверка через BIOS/UEFI

Информация о напряжении есть в BIOS. Чтобы попасть в него, нажимаем на клавишу Del при запуске системы. Это самый распространённый вариант, но могут быть и другие клавиши. Узнать точное значение можно на одном из стартовых экранов.

Напряжение блока питания БИОС

В BIOS нужно открыть вкладку Power и перейти в раздел Hardware Monitor. В зависимости от версии BIOS названия могут меняться. Внутри мы увидим значения напряжения по 12В, 5В и 3,3В.

UEFI напряжение компьютера

Если на компьютере используется не BIOS, а UEFI, то всё ещё проще. Информация о напряжении блока питания отображается на главном экране.

Использование специальных программ

Узнать значение напряжения можно и в среде Windows. Для этого нужна утилита для мониторинга состояния системы. Мы возьмём программу AIDA64. В течение 30 дней ей можно пользоваться бесплатно.

  1. Открываем AIDA64.
  2. В левом меню раскрываем раздел «Компьютер» и выбираем пункт «Датчики».
  3. В правой части окна смотрим внизу значения напряжения БП.

Этот способ хорош тем, что мы можем посмотреть на работу блока питания под нагрузкой. Например, запустить ресурсоёмкие программы и проверить, как БП справляется с возросшей активностью системы.

4111a1

41098f

c25efb100a

24edf6

c2e053

izmerennye-chastotnye-zavisimosti-reaktivnogo-soprotivleniya-jx-chetyreh-raznyh-kondensatorov-0

d02d11

88431e

схемопедия

Использование конденсаторов для понижения напряжения, подаваемого в нагрузку от осветительной сети, имеет давнюю историю. В 50-е годы радиолюбители широк применяли в бестрансформаторных источниках питания радиоприемников конденсаторы, которые включали последовательно в цепь нитей накала радиоламп. Это позволяло устранить гасящий резистор, являющийся источником тепла и нагрева всей конструкции. В последнее время заметен возврат интереса к источникам питания с гасящим конденсатором. Присущий всем без исключения подобным устройствам недостаток – повышенная опасность из-за гальванической связи выхода с электрической сетью – ясно осознается, но допускается в расчете на грамотность и аккуратность пользователя. Однако эти сдерживающие факторы недостаточны, чтобы уберечь от беды, отчего бестрансформаторные устройства могут иметь лишь весьма ограниченное применение.

93ffd46305

Здесь может представлять компромисный вариант источника, обеспечивающего электробезопасность, с гасящим конденсатором и простым, доступным начинающему радиолюбителю трансформатором. Таким трансформатор получится, если напряжение на его первичноу обмотке ограничить значением около 30 В. Для этого достаточно 600…650 витков сравнительно толстого, удобного при намотке провода; ради упрощения, можно для обеих обьоток использовать один и тот же провод. Излишек напряжения здесь примет на себя конденсатор, включенный последовательно с первичной обмоткой (конденсатор должен быть рассчитан на номинальное напряжение не менее 400 В). По такому принципу можно организовать питание низковольтных нагрузок с током в первичной цепи (с учетом небольшого коэффициента трансформации) до 0,5 А.

На рисунке представлена схема подобного устройства, подходящего для работы с гирляндой из светодиодов настольной мини-елочки или для аудио-плейера.

4b90c632a8

Включение светодоидов (8…10 штук) производится параллельно; при этом устраняется обычная путаница проводов, их легче сделать незаметнымы в “хвое” ствола и веточек. Трансформатор можно собрать на магнитопроводе Ш12х16. Для намотки подойдет провод ПЭВ-1 d=0,16 мм; число витков первичной и вторичной обмоток – 600 и 120…140 соответственно. Изготовить такой трансформатор труда не составляет.

Электрическую прочность не менее 2 кВ обеспечит изоляционная прокладка между обмотками из лавсановой пленки толщиной 0,1 мм или конденсаторной бумаги. Для того, чтобы устройство не вышло из строя при отключении нагрузки, к выходу моста VD1 – VD4 следует подключить стабилитрон Д815Г. В нормальном режиме он не работает, поскольку имеет минимальное напряжение стабилизации выше рабочего на выходе моста. Предохранитель FU1 защищает трансформатор и стабилизатор при пробое конденсатора С1. Для ограничения тока при подключении блока питания к сети последовательно с С1 необходимо включить резистор сопротивлением несколько сотен Ом, а для расрядки конденсатора после отключения – параллельно ему резистор несколько сотен кОм. В цепи последовательно соединенных емкостного (конденсатор С1) и индуктивного сопротивлений (трансформатор Т1) может возникать резонанс напряжения. Об этом следует помнить при конструировании подобных источников питания.

Аппаратная диагностика блока питания

Программная диагностика актуальна, если блок питания включается. Однако часто на блок питания мы обращаем внимание только тогда, когда он перестаёт работать. И здесь уже придётся использовать другие инструменты, чтобы проверить его состояние. Например, нам точно понадобится мультмиметр.

Итак, у нас есть нерабочий блок питания. Теперь нужно выяснить, точно ли виноваты конденсаторы.

Замена конденсатора в блоке питания пк

Первым делом нужно попробовать включить блок питания без компьютера. Для этого надо подключить его в сеть и замкнуть 20 или 24-пиновый коннекторы (в зависимости от модели). Возьмите пинцет, скрепку или кусочек провода и поместите предмет в контактный ATX коннектор – одним концом, куда выходит единственный зеленый провод, а другим, куда выходит любой черный провод. Мультиметр нужно вставить в любой другой разъем – черный щуп к черному проводу, а красный щуп к одному из трех цветных проводов – желтому, красному или оранжевому. При соединении с желтым проводом мультиметр должен показывать напряжение 12 V, с красным – 5 V, с оранжевым – 3.3 V.

24-пиновый коннектор блока питания

При исправном блоке питания запустятся вентиляторы, а на разъёмах появится напряжение, что говорит нам о полной исправности устройства.

Таблица напряжения

Но в нашем случае блок не запустился, напряжения нет.

Замер напряжение мультиметром

Переменный ток

Господа, сегодняшнюю статью можно считать в некотором роде продолжением предыдущей. Сначала я даже хотел поместить весь этот материал в одну статью. Но его получилось довольно много, на горизонте были новые проекты, и я в итоге разделил его на две. Итак, сегодня мы поговорим про сопротивление конденсатора переменному току

Читайте также:  Кабель для сабвуфера REL Bassline Blue 10 m

. Мы получим выражение, по которому можно будет рассчитать, чему равно сопротивление любого конденсатора, включенного в цепь с переменным током, а в конце статьи рассмотрим несколько примеров такого расчета.

Сразу оговорюсь про одну важную вещь. Вообще говоря, реальный конденсатор обладает помимо емкостного

сопротивления еще
резистивным
и
индуктивным
. На практике все это надо обязательно учитывать, потому что возможны ситуации (обычно связанные с ростом частоты сигнала), когда конденсатор перестает быть конденсатором и превращается… в некое подобие катушки индуктивности. При проектировании схем этот момент обязательно надо иметь в виду. Согласитесь, господа, крайне неприятно поставить в схему конденсатор и потом столкнуться с тем, что из-за высокой частоты он ведет себя и не как конденсатор вовсе, а как самый настоящий дроссель. Это, безусловно, очень важная тема, но сегодня речь пойдет не о ней. В сегодняшней статье мы будем говорить непосредственно про
емкостное
сопротивление конденсатора. То есть мы будем считать его идеальным, без каких бы то ни было паразитных параметров вроде индуктивности или активного сопротивления.

Давайте представим, что у нас есть конденсатор, который включен в цепь с переменным током. В цепи больше нет никаких компонентов, только один конденсатор и все (рисунок 1).

Рисунок 1 – Конденсатор в цепи переменного тока

К его обкладкам приложено некоторое переменное напряжение U(t), и через него течет некоторый ток I(t). Зная одно, можно без проблем найти другое. Для этого надо всего лишь вспомнить прошлую статью про конденсатор в цепи переменного тока, там мы про все это довольно подробно говорили. Будем полагать, что ток через конденсатор изменяется по синусоидальному закону вот так

В прошлой статье мы пришли к выводу, что если ток изменятся вот по такому закону, то напряжение на конденсаторе должно меняться следующим образом

Пока что ничего нового мы не записали, это все дословное повторение выкладок из предыдущей статьи. А сейчас самое время их немного преобразовать, придать им чуть другой облик. Если говорить конкретно, то нужно перейти к комплексному представлению сигналов! Помните, на эту тему была отдельная статья? В ней я говорил, что она нужна для понимания некоторых моментов в дальнейших статьях. Вот как раз и наступил тот момент, когда пора вспомнить все эти хитрые мнимые единицы. Если говорить конкретно, то сейчас нам потребуется показательная

запись комплексного числа. Как мы помним из статьи про комплексные числа в электротехнике, если у нас есть синусоидальный сигнал вида

то его можно представить в показательной форме вот так

Почему это так, откуда взялось, что здесь какая буковка значит – обо всем уже подробно говорили. Для повторения можно перейти по ссылке и еще раз со всем ознакомиться.

Давайте-ка теперь применим это комплексное представление для нашей формулы напряжения на конденсаторе. Получим что-то типа такого

Теперь, господа, я хотел бы вам рассказать еще про один интересный момент, который, наверное, следовало бы описать в статье про комплексные числа в электротехнике. Однако тогда я про него как-то позабыл, поэтому давайте рассмотрим его сейчас. Давайте представим, что t=0. Это приведет к исключению из расчетов времени и и частоты, и мы переходим к так называемым комплексным амплитудам

сигнала. Безусловно, это не значит, что сигнал из переменного становится постоянным. Нет, он все так же продолжает изменяться по синусу с той же самой частотой. Но бывают моменты, когда частота нам не очень важна, и тогда лучше от нее избавиться и работать только с
амплитудой
сигнала. Сейчас как раз такой момент. Поэтому полагаем
t=0 и получаем комплексную амплитуду напряжения
Давайте раскроем скобки в экспоненте и воспользуемся правилами работы с показательными функциями.

Итак, у нас имеется три множителя. Будем разбираться со всеми по порядку. Объединим первые два и запишем выражение следующего вида

Что мы вообще такое записали? Правильно, комплексную амплитуду тока

через конденсатор. Теперь выражение для комплексной амплитуды напряжения принимает вид

Результат, к которому мы стремимся, уже близок, но остается еще один не очень приятный множитель с экспонентой. Как с ним быть? А, оказывается, очень просто. И снова нам на помощь придет статья по комплексным числам в электротехнике, не зря ж я ее писал. Давайте преобразуем этот множитель, воспользовавшись формулой Эйлера:

Да, вся эта хитрая экспонента с комплексными числами в показателе превращается всего лишь в мнимую единичку, перед которой стоит знак минус. Согласен, возможно, осознать это не так просто, но тем не менее математика говорит, что это так. Поэтому результирующая формула у нас принимает вид

Давайте выразим из этой формулы ток и приведем выражение к виду, соответствующему закону Ома. Получим

Как мы помним из статьи про закон Ома, у нас ток равнялся напряжению, деленному на сопротивление. Так вот, здесь практически то же самое! Ну, за исключением того, что у нас ток и напряжение – переменные и представлены через комплексные амплитуды. Кроме того, не забываем, что ток течет у нас через конденсатор. Поэтому, выражение, которое стоит в знаменателе, можно рассматривать как емкостное
сопротивление конденсатора переменному току
:

Да, выражение для сопротивления конденсатора имеет вот такой вот вид. Оно, как вы можете заметить, комплексное

. Об этом свидетельствует буковка
j в знаменателе дроби. А что значит эта комплексность? На что она влияет и что показывает? А показывает она, господа, исключительно сдвиг фазв 90 градусов
между током и напряжением на конденсаторе. А именно, ток на 90 градусов опережает напряжение. Этот вывод не является для нас новостью, про все это было подробно рассказано в прошлой статье. Чтобы это лучше осознать, надо теперь мысленно пройтись от полученной формулы вверх к тому моменту, где у нас это
j возникло. В процессе подъема вы увидите, что мнимая единица j возникло из формулы Эйлера из-за того, что там был компонент. Формула Эйлера у нас возникла из комплексного представления синусоиды. А в исходной синусоиде как раз был заложен сдвиг фазы в 90 градусов тока относительно напряжения. Как-то так. Вроде все логично и ничего лишнего не возникло.
Теперь может возникнуть два совершенно логичных вопроса: как работать с таким представлением и в чем его выгода? Да и вообще, пока лишь какие-то дико абстрактные буковки и нифига не ясно, как взять и оценить сопротивление какого-нибудь конкретно конденсатора, который мы купили в магазине и воткнули в схему. Давайте разбираться постепенно.

Читайте также:  Электростатический динамик своими руками

Как мы уже говорили, буковка j в знаменателе говорит нам лишь о сдвиге фаз тока и напряжения. Но она не влияет на амплитуды тока и напряжения. Соответственно, если сдвиг фаз нас не интересует

, то можно исключить эту буковку из рассмотрения и получить более простое выражение абсолютно без всяких комплексностей:

Согласитесь, жить стало чуточку легче. Это выражение позволяет рассчитать сопротивление конденсатора для конкретной емкость и частоты сигнала. Заметьте, господа, интересный факт. Сопротивление конденсатора, оказывается, зависит не только от самого конденсатора (а именно его емкости), но и от частоты протекающего тока.

Если вспомнить обычные резисторы, то в них у нас сопротивление зависело только от самого резистора, материала, формы и всего такого прочего, но не зависело от частоты (разумеется, мы говорим сейчас про идеальные резисторы, без всяких паразитных параметров). Здесь все по-другому. Один и тот же конденсатор на разной частоте будет иметь разное сопротивление и через него будет течь ток разной амплитуды при одной и той же амплитуде напряжения.

Что еще мы можем сказать, глядя на эту формулу? Например, то, что чем больше частота сигнала, тем меньше для него сопротивление конденсатора. И чем больше емкость конденсатора, тем меньше его сопротивление переменному току.

По аналогии с резисторами, сопротивление конденсаторов измеряется все так же в Омах. Однако всегда следует помнить, что это немного другое сопротивление, его называют реактивным

. И другое оно в первую очередь из-за того самого пресловутого
j в знаменателе, то есть из-за сдвига фазы. У «обычных» (которые называют активными
) Омов такого сдвига нет, там напряжение четко совпадает по фазе с током. Давайте построим график зависимости сопротивления конденсатора от частоты. Для определенности емкость конденсатора возьмем фиксированной, скажем, 1 мкФ. График представлен на рисунке 2.

cap2

Рисунок 2 (кликабельно) – Зависимость сопротивления конденсатора от частоты

На рисунке 2 мы видим, что сопротивление конденсатора переменному току убывает по закону гиперболы.

При стремлении частоты к нулю

(то есть фактически при стремлении переменного току к постоянному) сопротивление конденсатора стремится к бесконечности. Это и логично: мы все помним, что для постоянного тока конденсатор фактически представляет собой разрыв цепи. На практике оно, конечно, не бесконечно, а ограничено сопротивлением утечки конденсатора. Тем не менее, оно все равно очень велико и часто его и считают бесконечно большим.

При стремлении частоты к бесконечности

, сопротивление конденсатора стремится к нулю. Это все в теории, конечно. На практике реальный конденсатор обладает рядом паразитных параметров (в частности, паразитная индуктивности и сопротивление утечки), из-за чего сопротивление уменьшается только лишь до некоторой определенной частоты, а потом начинает наоборот расти. Но об этом более подробно в другой раз.

Есть еще один вопрос, который хотелось бы обговорить, прежде чем начинать рассмотрение примеров. Зачем вообще писать букву j в знаменателе сопротивления? Не достаточно ли просто всегда помнить про сдвиг фаз, а в записи использовать числа без этой мнимой единицы? Оказывается, нет. Представим себе цепь, где одновременно присутствуют резистор и конденсатор. Скажем, они соединены последовательно. И вот тут-то как раз мнимая единичка рядом с емкостью не позволит просто так взять и сложить активное и реактивное сопротивление в одно действительное число. Общее сопротивление такой цепочки будет комплексным, причем состоящим как из действительной части, так и из мнимой. Действительная часть будет обусловлена резистором (активными сопротивлением), а мнимая – емкостью (реактивным сопротивлением). Впрочем, это все тема для другой статьи, сейчас не будем в это углубляться. Давайте лучше перейдем к примерам.

Пусть у нас есть конденсатор емкостью, скажем C=1 мкФ. Требуется определить его сопротивление на частоте f1=50 Гц и на частоте f2=1 кГц. Кроме того, следует определить амплитуду тока с учетом того, что амплитуда приложенного к конденсатору напряжения равна Um=50 В. Ну и построить графики напряжения и тока.

Собственно, задачка эта элементарная. Подставляем циферки в формулу для сопротивления и получаем для частоты f1=50 Гц сопротивление, равное

А для частоты f2=1 кГц сопротивление будет

По закону Ома находим величину амплитуды тока для частоты f1=50 Гц

Аналогично для второй частоты f2=1 кГц

Теперь мы легко можем записать законы изменения тока и напряжения, а также построить графики для этих двух случаев. Полагаем, что напряжение у нас изменяется по закону синуса для первой частоты f1=50 Гц следующим образом

А для второй частоты f2=1 кГц вот так

Дальше мы помним, что ток в конденсаторе опережает напряжение на.

Поэтому с учетом этого можем записать закон изменения тока через конденсаторы для первой частоты
f1=50 Гц
и для частоты f2=1 кГц

Графики тока и напряжения для частоты f1=50 Гц представлены на рисунке 3

sig50vis

Рисунок 3 (кликабельно) – Напряжение на конденсаторе и ток через конденсаторе, f1=50 Гц

Графики тока и напряжения для частоты f2=1 кГц представлены на рисунке 4

sig1000vis

Рисунок 4 (кликабельно) – Напряжение на конденсаторе и ток через конденсаторе, f2=1 кГц

Итак, господа, мы сегодня познакомились с таким понятием, как сопротивление конденсатора переменному току, научились его считать и закрепили полученные знания парочкой примеров. На сегодня все. Спасибо что прочитали, всем огромной удачи и пока!

Вступайте в нашу группу Вконтакте

Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.

Social button for Joomla

Оцените статью
Добавить комментарий